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INTRODUCTION

The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of
changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995
National Assessment of United States oil and gas  resources (Gautier et al., 1996). To attain these objectives, this
project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic
geochemistry, modeling of basin thermal dynamics, reservoir characterization,  and pressure analysis.

This project  proceeded in two phases which had the following objectives:

    Phase       I       (4/1998       through       5/1999):   Identify and describe the geologic and geographic  distribution of potential
basin-centered gas systems, and

    Phase       II       (6/1999       through       11/2000):   For selected systems, estimate the location of those basin-centered gas
resources that are likely to be produced over the next 30 years.

In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on
information published in the literature or acquired  from internal computerized well and reservoir data files. These
newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic
scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of
detail desired or required.

The thirty-three potential accumulations investigated in Phase I are in the list below. For each, we summarize the
geologic setting and data favoring the existence of a potential basin-centered gas accumulation.

Anadarko Basin Mesozoic Rift Basins (eastern U.S.)
Appalachian Basin (Clinton-Medina and older Formations) Michigan Basin (St. Peter Sandstone)
Arkoma Basin Mid-Continent Rift
Black Warrior Basin Paradox Basin (Cane Creek interval)
Central Alaska basins Park Basins of Colorado
Chuar Group (Precambrian Paradox Basin) Permian Basin (Abo Formation)
Columbia Basin Rio Grande Rift (Albuquerque Basin)
Colville Basin, Alaska Raton Basin
Cook Inlet, Alaska Sacramento Basin
Denver Basin Salton Trough, California
Great Basin (Tertiary basins) San Rafael Swell (Dakota Formation)
Gulf Coast-Austin Chalk Santa Maria Basin (Monterey Formation)
Gulf Coast-Eagle Ford Formation Snake River downwarp, Idaho
Gulf Coast-Travis Peak/Cotton Valley Formations Sweetgrass Arch (central Montana)
Hanna Basin Wasatch Plateau
Hornbrook Basin/Modoc Plateau Western Washington (Willamette-Puget
Los Angeles Basin (deep) Sound Trough)
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PHASE I

In Phase I we divided the thirty-three (33) basins or areas into two categories: High Potential
Accumulations, or those we believe have high potential for development in the next 30 years, and Other
Potential Accumulations , those that have some potential, but are not as likely to be developed within the next
30 years. Note that well-known and explored basin-centered accumulations (such as the Green River basin, the San
Juan basin, the Piceance basin, and the Uinta basin) are not addressed in this report. We grouped the 33 areas using
some of the following considerations:

(1) the amount of data available for an area, and our level of confidence in the data;

(2) the magnitude or size of the potential resource;

(3) the geologic and economic risk (e.g., depth, remoteness);

(4) geographic distribution;

(5) the estimated 30-year impact of the potential accumulation; and

(6) the relationship to the USGS 1995 national oil and gas assessment (Have our perceptions about an area
changed?).

List of high potential accumulations:

Anadarko Basin
Columbia Basin
Cook Inlet, Alaska
Gulf Coast-Travis Peak/Cotton Valley Formations
Hanna Basin
Michigan Basin (St. Peter Sandstone)
Paradox Basin (Cane Creek interval)
Permian Basin (Abo Formation)
Raton Basin
Rio Grande Rift
Sacramento Basin

List of other potential accumulations:

Appalachian Basin (Clinton-Medina and older Formations) Los Angeles Basin (deep)
Arkoma Basin Mesozoic Rift basins (eastern U.S.)
Black Warrior Basin Mid-Continent Rift
Central Alaska basins Park Basins of Colorado
Chuar Group (Precambrian Paradox Basin) Salton Trough
Colville Basin, Alaska San Rafael Swell (Dakota Formation)
Denver Basin Santa Maria Basin (Monterey Formation)
Great Basin (Tertiary basins) Snake River downwarp
Gulf Coast-Austin Chalk Sweetgrass Arch (central Montana)
Gulf Coast-Eagle Ford Formation Wasatch Plateau
Hornbrook Basin/Modoc Plateau Western Washington (Willamette-Puget Sound

Trough)
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PHASE II

In Phase II we made a much more comprehensive analysis of seven of the eleven high potential areas from
Phase I determined to contain resources that will be available in a 30-year period. These areas include the following:

Anadarko Basin
Columbia Basin
Gulf Coast-Travis Peak/Cotton Valley (two reports presented separately)
Michigan Basin (St. Peter Sandstone)
Raton Basin
Rio Grande Rift (Albuquerque Basin)
Sacramento Basin

Extensive research and analysis on each of the seven areas resulted in interpretive reports that will be released as
separate chapters in U.S.G.S. E-Bulletin Series 2184. The U.S. Geological Survey’s publication policy states that
interpretive research cannot be published as an Open-File Report; therefore, the eight reports, now in press, will be
published as Electronic Bulletins and will be available via the Internet at:

   http://greenwood.cr.usgs.gov/bulletin.html   

The titles and abstracts for each of the eight bulletin chapters follow in Appendix I:  Phase II Abstracts.

http://greenwood.cr.usgs.gov/bulletin.html
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BASIN-CENTERED/CONTINUOUS-TYPE ACCUMULATIONS

Basin-centered or continuous-type accumulations are large single fields having spatial dimensions equal to or
exceeding those of conventional plays. They cannot be represented in terms of discrete, countable units delineated by
downdip hydrocarbon-water contacts (as are conventional fields). The definition of continuous accumulations is based
on geology rather than on government regulations defining low permeability (tight) gas. Continuous accumulations
are identified by their occurrence downdip from water-saturated rocks, lack of obvious trap or seal, relatively low
matrix permeability, abnormal (either high or low) pressures, large in-place hydrocarbon volumes, and low recovery
factors (Schmoker, 1995). There may be a period of normal pressuring during the transition between over- and
underpressuring. This period can occur when a basin experiences uplift and erosion, causing basin cooling.

The U.S. Geological Survey 1995 National Petroleum Assessment treated continuous plays as a separate
category, and play assessment used a specialized methodology (Schmoker, 1995). Continuous plays are geologically
diverse and include the following categories: coal-bed gas, some biogenic gas occurrences, fractured gas shales, and
basin-centered natural gas accumulations. Only continuous-type basin-centered gas plays comprise significant future
undiscovered resources in deep sedimentary basins.

Assessment of continuous plays is based on the concept that an accumulation can be regarded as a collection of
hydrocarbon-bearing cells.  In the play, cells represent spatial subdivisions defined by the drainage area of wells.
Cells may be productive, nonproductive, or untested. Geologic risk, expressed as play probability, is assigned to
each play. The number of untested cells in a play, and the fraction of untested cells expected to become productive
(success ratio) are estimated, and a probability distribution is defined for estimated ultimate recoveries (EURs) for
those cells expected to become productive. The combination of play probability, success ratio, number of untested
cells, and EUR probability distribution yields potential undiscovered resources for each play. Refer to Schmoker
(1995) for a detailed discussion of continuous-type plays and their assessment.

In 1995 the USGS defined 61 continuous-type plays with oil and gas reservoirs in sandstones, shales, chalks,
and coals. Of the 61 identified plays, 47 were assessed, of which 34 were gas plays.  Estimates of technically
recoverable gas resources from continuous-type sandstones, shales, and chalks range from 219 Tcf (95th fractile) to
417 Tcf (5th fractile), with a mean estimate of 308 Tcf. Continuous-type accumulations were not assessed or
identified in many areas or regions of the U.S.

Four categories of continuous-type accumulations can be identified with respect to new data and perceptions
since the USGS 1995 National Petroleum Assessment:

(1) Continuous-type plays that were correctly identified as such, assessed in 1995, but need to be updated
because of new data;

(2) Continuous-type plays that may have been identified incorrectly as conventional plays and assessed as such
in 1995;

(3) Continuous-type plays that were identified as such in 1995, but not assessed because of a lack of data; and

(4) New continuous-type plays that were not identified in 1995.

In detail, basin-centered gas accumulations have the following characteristics:

(1) They are geographically large and cover from 10s to 100s of square miles in areal extent, often occupying
the central deeper parts of sedimentary basins;

(2) They lack downdip water contacts, and hydrocarbons are not held in place by gas floating above water;

(3) Reservoirs are abnormally pressured, either under- or overpressured;
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(4) The pressuring phase of the reservoir is maintained by gas;

(5) Water production is usually low or absent;

(6) Most reservoir permeability is low, generally less than 0.1 md;

(7) Reservoirs may be overlain by normally pressured rock;

(8) Reservoirs contain primarily thermogenic gas, although some shallow basin-centered reservoirs containing
gas of biologic origin occur in somewhat different geologic environments;

(9) Source rocks are in close proximity to reservoir rocks;

(10)Structural and stratigraphic traps are less important; compartments may exist and can generally form an
array of accumulation “sweet spots;”

(11)Multiple fluid phases contribute to seal development in reservoirs; and

(12)The tops of many basin-centered accumulations occur within a narrow range of vitrinite reflectance, usually
between 0.75 and 0.9 Ro.

Examples of pressure condition variability in gas deposits

A distinction needs to be made between low-permeability (tight) conventional accumulations, which may or
may not be abnormally pressured, and continuous basin-center accumulations that are, by definition, abnormally
pressured. If only limited geologic and production data are available, erroneous interpretations may result. The
following examples from the Phase II interpretive reports (in press) illustrate the high variability in pressure
conditions in gas deposits that may or may not be basin-centered accumulations.

Hanna Basin, Wyoming (a basin-centered continuous-type accumulation with both over- and
underpressured compartments)

A geologic and production data set based on 29 deep wells in the Hanna basin supports the presence of a
hypothetical (no known production) basin-center gas play. The Hanna is a small, deep Laramide pull-apart basin
located in south-central Wyoming.

Data interpretations suggest that both over- and underpressured compartments exist (Wilson et al., in press). A
gas-charged overpressured interval may exist within the Cretaceous Mowry, Frontier and Niobrara Formations at
depths below 10,000 ft along the southern and western margins of the basin. Overpressuring may also occur near the
basin center within the Steele Shale and lower Mesaverde Group section at depths below 18,000 to 20,000 ft. This
overpressured zone is likely to be relatively small (probably 20 to 25 mi in diameter) and is probably depleted of gas
near major basement reverse faults and outcrops where gas may have escaped.

A zone of subnormal pressure also may exist below a shallow water-saturated, normally pressured zone, and
above the central zone of overpressure. Subnormal pressures may occur in the center of the Hanna basin at depths
ranging from 10,000 to 25,000 feet based on indirect evidence that includes lost-circulation zones. On the south side
of the basin, where the top of the sub-normally pressured zone is believed to cut across stratigraphic boundaries, tests
of the Niobrara Formation in three wells showed some gas and oil recovery with very low shut-in pressures.
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Appalachian Basin (Clinton-Medina and Older Formations) (normal conventional
accumulations and continuous-type underpressured basin-centered accumulations)

In the Appalachian basin, oil and gas trapped in Lower Silurian sandstone reservoirs define a regional
hydrocarbon accumulation covering large areas of Ohio, Pennsylvania, New York, and Ontario, Canada (Ryder and
Zagorski, 2000). Major reservoirs consist of Clinton and Medina Sandstones in Ohio, and Crimsby and Whirlpool
Sandstones of the Medina Group in Pennsylvania and New York. These Lower Silurian sandstones were deposited as
a regional clastic wedge in a foreland basin setting during the late phase of the Taconic orogeny. Using Rocky
Mountain examples as a guide, the eastern gas-bearing part of the Lower Silurian regional accumulation is
recognized as a basin-center gas accumulation, whereas the western part is recognized as a conventional
accumulation.

In Ohio and northwestern Pennsylvania, the boundary between accumulation types has been placed at the -3,500
ft subsea structural contour on the top of the Clinton Sandstone (Ryder and Zagorski, 2000). East of this northeast-
trending boundary, reservoirs are underpressured, gas-charged, and contain no producible water. Reservoirs west of the
boundary, in the conventional part of the accumulation, have mobile formation water and are normally pressured.
Here, the updip pinchout of the Lower Silurian clastic wedge stratigraphically traps conventional reservoirs. In the
eastern basin-center gas accumulation, reservoirs are tight (less than 0.1 md), and have high irreducible water
saturations and abnormally low formation pressures.

Gulf Coast Basin–Cotton Valley Group (normal to overpressured conventional accumulations)

In 1995 the USGS assessed two conventional gas plays and one continuous basin-center gas play (Cotton
Valley Blanket Sandstones Gas play ) in Cretaceous/Jurassic Cotton Valley sandstones of the onshore northern Gulf
Coast basin. Re-evaluation of geologic and production data on hundreds of wells suggests that all of these plays are
conventional, and that a continuous basin-center gas accumulation does not exist in Cotton Valley sandstones
(Bartberger et al., in press).

Using reservoir properties and gas-production characteristics, Bartberger and others (in press) identified two
Cotton Valley sandstone trends:  1) transgressive blanket sandstones across northern Louisiana have relatively high
porosity and permeability and do not require fracture stimulation to produce gas at commercial rates; and 2) south of
this trend and extending westward into east Texas, massive sandstones of the Cotton Valley exhibit low porosity and
permeability and do require fracture stimulation. Pressure gradients throughout most of both trends are normal.

Two factors indicate that the fields in this trend are conventional: 1) the presence of gas-water contacts in at least
seven fields across the blanket-sandstone trend, and 2) the relatively high permeabilities and high gas-production rates
occurring without fracture stimulation. Within the tight massive-sandstone trend, however, permeability is
sufficiently low that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined.
With increasing depth through these transition zones, gas saturation decreases and water saturation increases;
eventually, gas saturations may become sufficiently low that, in terms of cumulative production, wells become non-
commercial. The interpreted presence of gas-water contacts within the tight, massive Cotton Valley sandstone trend
suggests that accumulations in this trend are also conventional, and that a basin-center gas accumulation does not
exist within the Cotton Valley Sandstone in the northern Gulf Basin.
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PROJECT ORGANIZATION

TASKS:

Phase I (April 1998 through March 1999)
The USGS shall conduct a National inventory of known basin-centered gas systems, define new
potential systems, rank them according to levels of geologic certainty, further delineate their
geologic and geographic characteristics, and produce a map showing their distribution throughout
the U.S.

Task No. 1 April 1998 through March 1999
Conduct a National inventory of known basin-centered gas systems and produce a map showing
geographic location, and supporting documentation of their stratigraphic location and geologic
characteristics.

Task No. 2 April 1998 through March 1999
Re-examine basins and other areas throughout the U.S. that were previously defined as
conventional accumulations, and determine if they might have been mis-classified.  If it is
determined that these basins or areas exhibit characteristics that could be consistent with those of
basin-centered gas systems, maps of their location and supporting geologic documentation will be
provided.

Task No. 3 October 1998 through March 1999
Risk and rank the newly created list of basin-centered gas systems according to levels of geologic
certainty.

Phase II (June 1999 through November 2000)
Phase II focuses on defining “sweet spots” (that portion of the basin-centered gas resource that will
be available in 30 years) within the seven basin-centered gas systems determined in Phase I
(Sacramento/San Joaquin Basins, Raton Basin, Rio Grande Rift, Anadarko Basin, Travis
Peak/Cotton Valley, Columbia Basin/W. Flank of the Cascades, Michigan Basin/St. Peter
Sandstone).

Task No. 4 June 1999 through November 2000
Through rigorous geologic analysis, define “sweet spots” within the selected basin-centered gas
systems.

Task No. 5 June 1999 through November 2000
For the “sweet spots”, make judgments and recommendations as to the 30-year availability of the
gas resource.

Task No. 6 June 1999 through November 2000
Prepare a final report that documents the Phase I and Phase II activities.  The final report shall
include a digital map showing all defined basin-centered gas systems for the U.S., documentation
of their geologic characteristics, identification of selected potential sweet spots, and judgments and
recommendations as to the social relevance of the resource (availability over a 30-year time frame).
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ANADARKO BASIN

GEOLOGIC SETTING

The Anadarko Basin extends from western Oklahoma to the eastern part of the Texas panhandle. Figure 1 shows
the geomorphic or tectonic features that border the basin:  the Amarillo Uplift to the southwest, the Wichita-Criner
Uplift to the south, the Arbuckle and Hunton-Pauls Valley Uplift to the southeast, the Central Oklahoma Platform
to the east, and the Northern Oklahoma Platform to the north. The Anadarko Basin is asymmetric in profile and
deepest along the steep southwestern flank near the Wichita Fault system. Displacement along this fault exceeds
30,000 feet (Al-Shaieb, et al., 1997a).

One of the deepest basins in the United States, the Anadarko Basin contains over 40,000 feet of Paleozoic
sediments. Figure 2 shows a generalized stratigraphic column of the basin. Hill and Clark (1980) have divided the
deposits into five sequences:  1) a mid-Cambrian Arbuckle to post-Hunton-orogeny period (of mostly carbonate
deposition), with hydrocarbons found mainly in structural traps; 2) Mississippian deposition of carbonates that
formed stratigraphic traps for gas; 3) Pennsylvanian deposition of Morrow-Springer series clastic rocks (mostly in
the northern shelf areas where the sediments were unaffected by orogenic movements in the southern parts of the
basin); 4) post-Morrowan or Late Pennsylvanian deposition of segregated sand lenses; and 5) deposition of lower to
middle Permian dolomitized shelf carbonates and Pennsylvanian Granite Wash sediments.

Formation of the Anadarko Basin began during the collision of Gondwana with the southern continental margin
of Paleozoic North America.  Structural inversion of the core of the southern Oklahoma aulacogen into the Wichita
thrust belt caused thrust loading of the region to the north, which subsided and became the Anadarko Basin.  Late
Pennsylvanian transpression formed numerous thrust-cored, en-echelon anticlines within the southeastern part of the
basin that were later eroded and overlain unconformably by Permian carbonates.  Subsidence of the basin continued
into middle Permian time.  The basin has remained quiescent since late Permian time (Perry, 1989).

HYDROCARBON PRODUCTION

Major hydrocarbon production from the Anadarko basin includes gas and oil from multiple Pennsylvanian
reservoirs (Granite Wash, Atoka, Morrow, and Springer Formations). The largest Pennsylvanian Atoka field is the
Berlin in Beckham County, Oklahoma, with an estimated ultimate recovery of 362 BCFG at 15,000 ft depth (Lyday,
1990). Some deep production has occurred from Mississippian through Cambro-Ordovician strata:  Washita Creek
field in Hemphill County, Texas, from the Cambro-Ordovician at 24,450 ft depth (single well reserves as high as 24
BCFG); and the Knox field (near the southeastern flank of the basin) from the Ordovician Bromide (Simpson) at
15,310 ft depth (single well reserves as high as 6.2 BCFG).

EVIDENCE FOR BASIN-CENTERED GAS

Strong evidence for a basin-centered gas accumulation is present in the form of thermally mature source rocks,
widespread production and shows of gas, and overpressuring (Figure 3) that cuts across stratigraphic boundaries. High
pressure gradients occur within the Red Fork and Morrow Sandstones. The Woodford shale forms the base of the
pressure cell (Figure 4); the top of the cell climbs stratigraphically into the basin (Al-Shaieb et al. (1990) termed
this regional overpressured cell a “Megacompartment Complex” or MCC).  Vitrinite reflectance values for the
Woodford follow this same general trend. The Pennsylvanian Atokan source rocks may exhibit these same
maturation trends.  



KEY ACCUMULATION PARAMETERS

Identification Mid-Continent Province, Anadarko Basin, Devonian Woodford through 
Pennsylvanian Oswego overpressured cell; plays 5812 through 5820 (Gautier 
et al., 1996)

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Interval includes Devonian Woodford shale through Pennsylvanian Oswego 
formation, overpressured Megacompartment Complex (Al-Shaieb et al., 
1990, 1997a)

b. Total Organic Carbons 
(TOCs)

Values for the Woodford Shale range to 9%.  Atokan values unknown, but 
assumed to be high (Hester et al., 1990)

c. Thermal maturity Ro 0.5 – 2.0 (values from Woodford shale) (Hester et al., 1990)

d. Oil or gas prone Gas prone

e. Overall basin maturity Most of the basin is mature (Ro values for the Woodford exceed 0.7%) 
(Hester et al., 1990); overmature in the deepest parts of the basin

f. Age and lithologies Cambrian to Permian; sands, shales, carbonates, and granite wash

g. Rock extent/quality Apparent basin-wide source and reservoir-rock distribution; rocks often 
become tight in the deeper parts of the basin

h. Potential reservoirs Many producing reservoirs

i. Major traps/seals Woodford Shale, Atokan shales, Cambrian through Devonian shales and 
carbonates

j. Petroleum 
generation/migration 
models

Both in-situ generation and long distance migration of gases and oils from 
shales, carbonates and coaly rocks. The Bakken Shale model of Meissner 
(1978) for hydrocarbon generation and expulsion applies to evaluation of the 
Woodford Shale

k. Depth ranges Productive rocks occur at depths greater than 26,000 ft.  Overpressure occurs 
below 10,000 ft (Al-Shaieb et al., 1997a, b)

l. Pressure gradients Range from about 0.28 psi/ft outside the pressure cell to 0.8 psi/ft in the 
Springer-Morrow section, in the deepest part of the basin (Al-Shaieb et al., 
1997a, b).



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Many fields produce from Cambrian through Permian rocks:  Washita Creek 
field in Hemphill County, Texas, at the west end of the basin (from the 
Cambro-Ordovician at a depth of 24,450 ft; single well reserves as high as

24 BCFG); Knox field near the southeastern flank of the basin (from 
Bromide (Simpson) production at 15,310 ft depth; single well reserves as 
high as 6.2 BCFG) (Al-Shaieb et al., 1997b); Berlin field in Beckham

County, Oklahoma (from the Pennsylvanian Atokan formation; estimated 
ultimate recovery of 362 BCFG at 15,000 ft depth (Lyday, 1990))

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content Gases are generally high in Btu content and low in total inert gases

b. Recovery Recoveries vary depending on permeability, porosity and depth

c. Pipeline infrastructure Very good

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Most rocks are well indurated

f. Porosity/completion 
problems

Shales, tightly cemented sands and other tight (low permeability rocks) have 
the potential to produce where naturally fractured (many deep Anadarko 
Basin fields have permeabilities of less than 0.1 md).  Water sensitive clays 
also cause problems.

g. Permeability Ranges from less than 0.08 up to 6,000 md.

h. Porosity Highly variable.
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APPALACHIAN BASIN (CLINTON-MEDINA AND OLDER FORMATIONS)

GEOLOGIC SETTING

The Appalachian basin extends southwestward from the Adirondack Mountains in New York to central Alabama.
Figure 5 includes the area’s location . Structural boundaries include the Cincinnati arch on the west (in western Ohio
and Kentucky), and the Allegheny Front on the east (in West Virginia and Pennsylvania). The basin is about 900
miles long and 300 miles wide and includes at least 100 million surface acres (Roth, 1964).

The Appalachian basin originated as a sedimentary trough on the Precambrian surface that was later covered by
Cambrian seas. Deposition of great masses of marine and continental sediments occurred throughout the Paleozoic
Era. Carbonate and siliclastic tongues extended basinward from opposite margins synchronously in response to sea
level drops. The interplay of eustatic sea-level drop and local tectonic uplift resulted in stratigraphic sequences
bounded by widespread unconformities (Brett et al., 1990). Figure 6 shows correlation of the stratigraphy across the
basin. Three major orogenic events affected the basin: the Taconic Orogeny (Late Ordovician), the Acadian Orogeny
(Late Devonian), and the Allegheny Orogeny (Late Permian).

The geotectonic history of the basin includes the following stages:

1) Precambrian: metamorphic and igneous rocks of the Grenville deformation form a basement under the
Appalachian Foreland.

2) Early and Middle Cambrian: offset of the basement surface associated with the formation of the Iapetus
Ocean during Late Precambrian and Early Cambrian (Schumaker, 1996).

3) Upper Cambrian-Middle Ordovician:  relative crustal stability and the formation of a broad carbonate shelf.
In the Middle Ordovician, a Foreland basin develops from compression of the passive, carbonate-dominated
continental margin during collision with an island arc system (Taconic Orogeny). Thick turbidite sequences
record the early phases of the orogeny.

4) Late Ordovician (Ashgillian): waning of the main Taconic pulse, and deposition of the Bald Eagle-Oswego
sandstone wedge and the Juniata-Queenston red bed sequences.

5) Late Ordovician to Early Silurian: tectonic rejuvenation of the Taconic Front. In New York State, evidence
for a late Taconic pulse lies in the regionally extensive, low-angle unconformity at the Ordovician-Silurian
boundary (Cherokee Unconformity).

6) Early Silurian (Cherokee Unconformity) and Late Silurian (Salinic Unconformity): eastward subsidence of
the Appalachian Foreland Basin, which coincides with tectonic quiescence and thrust-load relaxation. A
thick Early Silurian clastic wedge results from this subsidence. Westward migration in the foreland basin
occurred during the Middle Silurian, depositing finer-grained strata; increased tectonism and onset of the
Salinic Disturbance may have caused this migration. A small-scale unconformity at the Siluro-Devonian
boundary may represent the latest Silurian tectonic activity (Brett et al., 1990).

7) Devonian-Late Permian: The Acadian (Devonian) and Allegheny orogenies (Late Permian) correlate to the
collision of the North American plate with other continental plates, eventually creating Pangaea at the end
of the Paleozoic (Schumaker, 1996). During the Allegheny (Appalachian) Orogeny, tremendous thrust
pulses from the east and southeast intensely folded and faulted the rocks in the eastern area. The deformation
becomes gradually less intense westward. The Ridge and Valley province shows the greatest folding of
rocks. The Allegheny Orogeny primarily determined the present day geologic pattern dividing the area into
two main parts–the Plateau province, and the Ridge and Valley province (Roth, 1964).
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HYDROCARBON PRODUCTION

The Appalachian basin has the longest history of oil and gas production in the United States. Since Drake's
Titusville discovery well in 1859, oil and gas has been continuously produced in the basin. Although opportunities
for oil and gas still exist (Petzet, 1991), new field discoveries are rare, and the Appalachian basin has been considered
a mature petroleum province as most of the significant plays have been already discovered and developed.

    Conventional        Plays:    Production from Late Cambrian to Late Ordovician rocks is considered conventional:

(1) The Upper Ordovician Queenston Formation produces gas from sandstones and sandy facies trapped in low-
amplitude anticlines and fractures.

(2) The Middle Ordovician Trenton play produces from fractured micrite in the transition zone between the
Trenton limestone and the overlying Utica Shale (Ryder et al., 1995).

(3) The Middle Ordovician St. Peter sandstone produces from structural traps.

(4) The Late Cambrian-Late Ordovician Knox Dolomite produces from structural and stratigraphic traps.

(5) The Cambrian pre-Knox Group (Conasauga Fm., Rome Fm., and Mt. Simon Sandstone) is extensive and
underlies the productive "Clinton"/Medina play area. This play has had limited production and may still
have potential for future gas production, including basin-centered gas. The section has been sparsely drilled,
and thick untested intervals remain in parts of the Rome trough and other areas. Production from pre-Knox
rocks has been limited to scattered wells in Kentucky, West Virginia, and Ontario, Canada. The area
underlying the Clinton/Medina gas play is considered a low-risk area and has estimated recoverable gas
resources of 460 BCF (Harris and Baranoski, 1996).

    Unconventional        Plays:    The oldest producing gas plays in the basin are Upper Devonian black shales and
sandstones. These plays include conventional to unconventional continuous-type accumulations. Milici (1996a,
1996b) noted the black shales serve both as source rocks and as reservoirs  for gas. Production to date has yielded
about 3.0 TCF, and estimates for recoverable reserves  reach about 20 TCF (Charpentier et al., 1993).

    Basin-centered       gas       plays:    The Lower Silurian "Clinton" sands/Medina Group sandstones gas play is under
development in New York, Pennsylvania and Ohio (Figure 5). Development of this basin-centered gas play has
expanded since the early 1970s. Ryder (1996) estimated the Appalachian basin to have about 61 trillion (TCF)
recoverable gas within Paleozoic sandstones and shales. An estimated 30 TCF may reside in basin-centered gas
accumulations in the Lower Silurian "Clinton"/Medina sandstones. Cumulative gas production per well is relatively
low. This play appears attractive for four reasons: the overall success rate approaches 90%; the drilling and
development costs remain low; there is low water production (and hence, low disposal costs); and the proximity to
population centers provides a market for the gas. To maximize gas recovery, operators drill closely spaced (40 acre)
wells and horizontal/directional wells. Hydraulic fracturing techniques improved production success from low
permeability sandstone reservoirs.

Ryder (1996) defined four continuous-type gas plays (6728-6731) in the "Clinton”/Medina sandstones interval,
flanked by two conventional plays that also have potential for continuous-type gas (6732, Clinton-Medina Sandstone
Oil/Gas; and 6727, Tuscarora Sandstone Gas). Figure 5 shows locations of basin-centered gas accumulations. Play
6728 (Clinton/Medina Gas High Potential) has the best production potential and covers 16,901 square miles. Source
rocks for these plays include Middle to Upper Devonian black shales, and Middle Ordovician Utica and Antes Shales.
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The depositional sequence of the "Clinton"/Medina sandstones include the basal Whirlpool Sandstone and
Medina Group, which unconformably overlie the Upper Ordovician Queenston Shale. These units represent
transgressive shoreface deposits with a lowermost braided fluvial component. The lower part of the "Clinton" sands
are shoreface deposits. These sandstones constitute parts of progradational parasequences that successively overlap
one another toward the northwest, pinch out seaward into the offshore marine Cabot Head Shale, and then appear to
downlap across the underlying transgressive systems. Ryder et al. (1996) interprets the named sandstones in the
Cabot Head Shale to be part of a progradational stacked-parasequence. Limestones within the Cabot Head appear to
be offshore carbonates separated by inner shelf mudrocks (Keighin, 1998). These limestones are regionally extensive,
but do have pinchouts and thickness changes in the intervening shale beds (Ryder et al., 1996).

EVIDENCE FOR BASIN-CENTERED GAS

While productive Cambrian and Ordovician reservoirs apparently are conventional gas plays, and Devonian
shales and sandstones harbor conventional to unconventional continuous-type accumulations, a basin-centered
hydrocarbon accumulation may exist in the "Clinton"/Medina sandstones, especially in play 6728 (Clinton/Medina
Gas High Potential) (Ryder et al., 1996; Ryder, 1996, 1998; Wandrey et al., 1997):

(1) Regionally extensive sandstones with a thick zone of gas saturation reside in the thicker, more deeply buried
part of this foreland basin. Sandstone thickness ranges from 120 to 210 ft, and average net thickness is 25
ft; sandstone-to-shale ratios range from 0.6 to 1.0.

(2) Gas fields are coalesced, and a high percentage of wells have production or gas shows.

(3) Reservoirs have low porosity and permeability; porosity ranges from 3 to 11% (averaging 5%).
Permeability ranges from 0.2 to 0.6 mD (generally averaging less than 0.01 mD).

(4) Formation pressures are abnormally low with a gradient ranging from 0.25 to 0.35 psi/ft. In the Tuscarora
Sandstone Gas (play 6727), there is evidence for overpressuring with a gradient ranging between 0.50-0.60
psi/ft.

(5) Structural traps are few.

(6) A gas-water contact is absent.

(7) Sandstones with higher water saturations are updip of the gas accumulation.

(8) Water yields are low; reservoir water saturation is less than 9 to 13 BW/MMCFG.

(9) Reservoir temperatures  are high–at least 125° F (52° C).



KEY ACCUMULATION PARAMETERS

Identification Eastern U.S. Appalachian basin.  Play:  Paleozoic Era - Late Cambrian and 
Ordovician sandstones and shales; Lower Silurian "Clinton" and Medina 
Group sandstones, and the equivalent Tuscarora Sandstone

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir The underlying Middle Ordovician Utica shale is the probable hydrocarbon 
source in the "Clinton"/Medina Group sandstones

b. Total Organic Carbons 
(TOCs)

Range from 3.0%-4.0% (Middle Ordovician Utica Shale, Trenton Limestone, 
Black River Limestone, and Wells Creek Formation); from 0.05% to 0.59% 
in the pre-Knox (Harris and Baranoski, 1996).

c. Thermal maturity Kerogen: 50% type II and 50% Type III; Vit Ref Equivalent (VRE): 0.75-
3.0; Conodont Alteration Index (CAI): 1.5-4.0; Tmax: 440-550. Ordovician 
strata in the study area are mature for both oil and gas generation (Wandrey 
et al., 1997; Ryder et al., 1996).

d. Oil or gas prone Both oil and gas prone; vitrinite reflectance suggests the majority of the area 
is in the window of significant gas generation.

e. Overall basin maturity Considered mature

f. Age and lithologies Cambrian-Ordovician (pre "Clinton"/Medina); Lower Silurian 
"Clinton"/Medina Group sandstones and the equivalent Tuscarora Sandstone

g. Rock extent/quality Basin-wide source and reservoir-rock distribution. Porosity reduction 
commonly results from secondary silica cementation; porosity often 
enhanced by dissolution of calcite cement, feldspars, corrosion of silica

cement and by natural fracturing. About half the total resource of the Basin 
(approximately 30 TCF) is estimated to reside in basin-centered gas 
accumulations.

h. Potential reservoirs "Clinton" sandstones; Medina Group sandstones; Tuscarora Sandstone

i. Major traps/seals Cabot Head Shale (Medina Group), Rochester Shale ("Clinton" sands)

j. Petroleum 
generation/migration 
models

Clinton/Medina" - Hydrocarbon source:  Utica Shale (Middle Ordovician), 
gas migration occurred vertically (1000 ft to 1400 ft) via fractures. Organic 
carbon content data indicates good generative potential for the Middle

Ordovician Utica Shale, Trenton Limestone, Black River Limestone, and 
Wells Creek Formation. Each of these units may have locally sourced basin-
centered gas potential; limited generative potential exists in the pre-Knox.



k. Depth ranges pre-Clinton/Medina 6000 to 11,500 ft in eastern OH; Clinton/Medina in 
eastern OH and NW PA from 4,000 to 6,300 ft; SW PA as much as 10,000 
ft; NY 1,000 to 4,000 ft; and southern OH and eastern KY 2,000 to 3,000 ft 
(Wandrey et al, 1997; Ryder et al, 1996).

l. Pressure gradients pre-Clinton/Medina - pre-Knox Group underpressured domain:  0.174 psi/ft 
(Innerkip field, Ontario,Canada); "Clinton"/Medina-(1) underpressured 
domain: 0.25 to 0.35 psi/ft (verified throughout most of NW PA and

adjoining western NY); "Clinton"/Medina-2) overpressured domain: 0.5-0.6 
psi/ft, east of the underpressured domain, in the Tuscarora Sandstone, near 
the Allegheny structural front (in Pennsylvania) (Ryder, 1996).

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Pre-"Clinton"/Medina:   Birmingham-Erie Field (Knox Group) sandstone 
reservoir 100 MMCFG/well; Middle Ordovician fractured carbonates-
Harlem gas field 2.1 BCFG; Trenton play Granville consolidated pool

50-100 MMCFG/yr.  A few pre-Knox wells have produced gas in the Rome 
Trough from the Conasauga Group (sands, shales and sandy dolomites), 
some wells have produced gas with up to 78% nitrogen (uncombustible gas).

"Clinton"/Medina basin-centered gas:  Lakeshore, Adams/Waterford/ 
Watertown, Athens, Indian Springs Pool of Conneaut field, Kastle pool of 
Conneaut field, Cooperstown, Oil Creek Pool of Cooperstown field, Kantz

Corners, North Jackson/Lordstown, NE Salem, Senecaville, Sharon Deep 
(Ryder, 1998)

b. Cumulative production Most of the basin-centered gas production occurs in Play 6728 (Clinton/ 
Medina Ss Gas-High Potential). Fields tend to merge together into 
continuous-type accumulations after additional drilling. For example, the

three or four Medina fields discovered in the 1960s in Chautauqua County, 
western New York, have now merged into the giant Lakeshore field, which 
has an ultimate recovery of 650 billion cf of gas. Assuming 40 acre spacing

the median estimated ultimate recovery per well is 70 MMCFG (Play 6728), 
50 MMCFG (Play 6729-Clinton/Medina Ss Gas Medium Potential), and high 
risk/low success ratio for Plays 6730 (Clinton/Medina Ss Gas Medium-

Low Potential) and 6731 (Clinton/Medina Ss Gas Low Potential) (Wandrey 
et al., 1997). Below are some examples of production data (for the better 
wells) from the "Clinton" sands in Ohio (Ryder, 1996).

County (OH)
Production

Township Operator Cumulative Gas
(MMCF) per Lease

Years of
Production

Noble....................Brookfield............ Kingston Oil Corp. ............... 146,835 ................ 1992-1995

Noble....................Brookfield............ Everflow Eastern................... 206,736 ................ 1990-1995

Noble....................Brookfield............ Kingston Oil Corp. ................. 94,548 ................ 1993-1995

Trumbull ...............Fowler ................ Eastern Petroleum................. 118,622 ................ 1987-1995

Trumbull ...............Fowler ................ Eastern Petroleum................... 82,148 ................ 1985-1994

Trumbull ...............Fowler ................ Eastern Petroleum................. 190,776 ................ 1984-1995

Noble....................Center................. Kingston Oil Corp. ............... 490,911 ................ 1985-1995



Economic 
Characteristics:

a. Inert gas content In Ohio, average Clinton-Medina nitrogen content is 5.1%, carbon dioxide 
content is 0.1% (Hugman et al., 1993).  In the Rome Trough and adjacent 
areas, very high inerts in natural gas have been reported from pre-Knox

rocks, sometimes rendering the gas non-combustible (up to 78% nitrogen).
b. Recovery Low. Continuous-type accumulations are characterized by low individual 

well-production rates and small well-drainage area. Directional/horizontal 
wells are being drilled to reduce the number of well sites.

c. Pipeline infrastructure Very good. There are numerous gas lines in the basin.

d. Exploration maturity 
relative to other basins

Mature

e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial 

f. Porosity/completion 
problems

Tight sands. Improved hydraulic fracturing techniques in recent years 
resulted in higher gas recoveries.

g. Permeability Pre-Knox=1.0 md (Innerkip field, Oxford Co., Ontario, Canada).

h. Porosity Pre-Knox=3.5 to 22% (Innerkip field, Ontario, Canada).
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ARKOMA BASIN

GEOLOGIC SETTING

The Arkoma Basin follows an east-west trend from northern Arkansas into east-central Oklahoma. Figure 7
shows the structural features that border the area:  the Ouachita Mountains on the south, the Seminole Arch and the
Arbuckle Uplift on the west, and the Ozark Uplift on the north. Tertiary sediments of the Mississippi Embayment
cover the eastern part of the basin. Figure 8 shows the basin is asymmetric in profile.

Compressional structures characterize the southern part of the basin, while normal faulting occurs in the
northern part. Development occurred from Cambrian to early Pennsylvanian time. Prior to basin development, the
area was a carbonate shelf (Horn and Curtis, 1996). Subsurface folds and thrust faults formed during the late stages of
foreland basin development. During the Late Pennsylvanian sediments completely filled the basin (Horn and Curtis,
1996).

Structural styles influence hydrocarbon production in the Arkoma basin. Blind imbricate thrust faults dominate
the northern Arkansas gas fairway and central basin; these thrusts ramp over normal fault blocks at depths above
5000 feet. Gas reservoirs occur below the thrust faults at depths of 5000 to 10,000 feet.

Seismic and well data reveal a southward thickening package of Carboniferous flysch (Figure 8) overlying thin
Paleozoic shelf strata in western Arkansas. Total sediment thickness reaches an estimated 46,000 feet in the southern
Ouachita mountains. Deposition of at least 39,000 feet of flysch occurred north of the Ouachita mountain front
(Lillie et al., 1983).

North of the Ouachita mountains, the Cambro-Ordovician Arbuckle carbonates accumulated in a marine-shelf
environment (Gromer, 1981). Rapid subsidence in the Ouachita basin during Devonian-Mississippian time led to
deposition of the Arkansas Novaculite. Deposition of the Mississippian Stanley shale Group, the Pennsylvanian
Jackfork Group, the Johns Valley Formation, and the Atoka Formation occurred (Figure 9) as the Arkoma basin
continued to subside. The Atoka Fm includes 20,000 feet of shale, sandstone and coal beds. Flysch sedimentation
continued until mid-Pennsylvanian time, when northward thrusting displaced the geosyncline (Gromer, 1981). A
collision between an island arc and the North American plate produced the Ouachita fold belt (Wickham, et al.,
1976).

HYDROCARBON PRODUCTION

Natural gas was first produced in 1901 at a depth of 2,000 feet from Pennsylvanian sandstones in Sebastian
County, Arkansas. The greatest exploration activity occurred along the northern part of the basin in Arkansas and
Oklahoma. Most major fields were discovered within the first 30 years of industry activity (Horn and Curtis, 1996).
In 1930, gas production was established from the Atokan Spiro sandstone at a depth of 6300 feet. Wilburton field,
the Arkoma basin's second largest field, was discovered in 1929 with production from Upper Atokan sandstones at
2500 feet. The Spiro sandstone was tested in 1960 and soon became the main producing zone. Except for Wilburton
and Red Oak fields, very few successful wells were drilled below 10,000 feet prior to the 1970’s (Horn and Curtis,
1996).

Production was established from the Spiro sandstone and Arbuckle carbonates in northern Oklahoma and
Arkansas during the late 1970s, opening a new fairway for deeper exploration. Production from Arbuckle (Cambro-
Ordovician), Viola (Ordovician) and Hunton (Siluro-Devonian) was established at Wilburton field at depths of 13,000
to 14,500 feet in 1988 (Horn and Curtis, 1996).

Limited shallow oil production occurs from the Stanley group (Mississippian) and fractured Paleozoic cherts
(Devonian Arkansas Novaculite) in the southern Ouachitas (Horn and Curtis, 1996).
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EVIDENCE FOR BASIN-CENTERED GAS

The Pennsylvanian Atoka Formation contains coals and shales with gas-prone kerogen. It extends over a wide
area and is very thick. Middle Atokan Red Oak sands contain some of the largest gas reserves in the Oklahoma part
of the Arkoma basin (Gromer, 1981).

The Devonian Woodford Shale, which contains type II oil prone kerogen, may have generated in excess of 22
billion barrels of oil (Comer and Hinch, 1987). This oil has probably cracked to gas in the deepest parts of the
Arkoma basin (Horn and Curtis, 1996). Other source rocks include the Womble (Ordovician), Polk Creek
(Ordovician), Sylvan (Ordovician), Woodford (Devonian-Mississippian), Arkansas Novaculite (Devonian-
Mississippian) and Caney (Mississippian) shales. Each of these has probably expelled significant hydrocarbons
(Horn and Curtis, 1996). Atokan shales are estimated to have generated between 53 and 212 TCFG. A large,
relatively untested area in southwestern Arkansas contains thick sequences of interbedded source and reservoir rocks,
and may contain large accumulations of gas (Horn and Curtis, 1996).

Figure 10 illustrates profiles of depth vs. vitrinite reflectance (Ro) for undifferentiated wells in Arkansas and
Oklahoma. Hendrick (1992) listed the following vitrinite reflectance values for producing zones at Wilburton Field:

Hartshorne Coal Ro < 1%
Atoka Shale Ro = 2.3% at 7,500 ft
Atoka Shale Ro = 2.6% at 9,400 ft
Spiro Sandstone Ro = 2.7% at 10,000 ft
Spiro Sandstone Ro = 3.0% at 11,500 ft
Arbuckle Dolomite Ro = 3.8%

These unusually high vitrinite values at moderate depths indicate a potentially overmature basin. Several
thousand feet of sediment may have been eroded from the surface.

The extensive source rocks and high thermal maturity levels in the Arkoma basin indicate that basin-centered gas
accumulations may exist which have not yet been identified. Thick Atoka shales probably provide the primary
barriers to gas migration. In the lower Paleozoic section, several shale intervals encasing productive carbonate
and sandstone reservoirs are thought to be effective seals (Horn and Curtis, 1996).



KEY ACCUMULATION PARAMETERS

Identification Arkoma Basin Province, Ordovician through Pennsylvanian Desmoinesian

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Ordovician Womble Shale through Pennsylvanian Desmoinesian shales and 
coals (Horn and Curtis, 1996); including the Woodford, the Chattanooga, and 
Atokan Shales

b. Total Organic Carbons 
(TOCs)

Range up to 19.6% in Woodford Shale (Comer and Hinch, 1987) and 
average 1.1% in Atokan shales (Horn and Curtis, 1996).

c. Thermal maturity Ro ranges from <1.0% for shallow Desmoinesian coals to 3.8% for the deep 
Arbuckle reservoir at Wilburton field (Horn and Curtis, 1996). Ro ranges 
from 0.8% to 3.5% at Red Oak field (Houseknecht and McGilvery, 1990)

d. Oil or gas prone Gas prone

e. Overall basin maturity Maturation levels are high. Deep parts of the basin may be overmature. 
Production exists where apparent overmaturity occurs.

f. Age and lithologies Ordovician to Pennsylvanian, sands, shales, coals and carbonates

g. Rock extent/quality Extensive source and reservoir rock distribution.  Reservoir rocks often 
become tight in the deep parts of the basin. Permeability barriers (seals) are 
poorly understood and undocumented (Horn and Curtis, 1996)

h. Potential reservoirs Many producing reservoirs

i. Major traps/seals Woodford Shale, Atokan shales, Desmoinesian shales, and Cambrian 
through Devonian shales and carbonates

j. Petroleum 
generation/migration 
models

Both in-situ generation and long distance migration of gases and oils from 
shales, carbonates and coaly rocks.  Hydrocarbon generation is probably 
ongoing with thermal cracking of oils from type II kerogen bearing shales.

The Bakken shale model of Meissner (1978), for hydrocarbon generation and 
explulsion, applies to the Woodford Shale, the Arkansas Novaculite 
equivalent, and the other type II kerogen source rocks (lower Paleozoic) 
(Horn and Curtis, 1996).

k. Depth ranges Earliest production in Arkansas was at 2000 ft in depth; productive rocks 
occur at depths ranging to 14,500 ft at Wilburton field (Horn and Curtis, 
1996).  Other early production occurred as shallow as 1300 ft (Houseknecht 
and McGilvery, 1990)

l. Pressure gradients Subnormal pressure gradients (0.3 psi/ft) in shallow Red Oak and Spiro 
sands at Red Oak Field (Houseknecht and McGilvery, 1990)



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Red Oak Field produces from Pennyslvanian sandstones at depths ranging 
from 1400 ft to 13,000 ft; Wilburton Field produces from Cambro-
Ordovician Arbuckle at depths from 13,000 to 14,500 ft.

b. Cumulative production Red Oak Field has produced 55 Bcfg from the Hartshorne, 700 Bcfg from the 
Red Oak, and 200 Bcfg from the Spiro sandstones as of 1987.

Economic 
Characteristics:

a. Inert gas content Gases have high btu content and low total inert gas content

b. Recovery Recoveries depend upon permeability, porosity and depth

c. Pipeline infrastructure Very good

d. Exploration maturity 
relative to other basins

Mature

e. Sediment consolidation Most rocks are well indurated

f. Porosity/completion 
problems

Shales, tightly cemented sands and other tight (low permeability) rocks have 
potential to produce where they are naturally fractured (many deep Arkoma 
Basin fields have permeabilities of less than 0.1 md).  Water sensitive clays 

also cause problems.  Diagenetic permeability barriers are poorly understood.

g. Permeability 0.1-200 md

h. Porosity 5-23%
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BLACK WARRIOR BASIN

GEOLOGIC SETTING

The Black Warrior Basin of Alabama and Mississippi is a foreland basin located in the major structural reentrant
between the Appalachian fold-and-thrust belt to the southeast and the Ouachita fold-and-thrust belt to the southwest.
Figure 11 shows the basin location and its major structural features. The northern margin of the basin is bounded by
the Nashville dome. The basin is shaped like a kite with its tail facing south, and has a surface area of about 35,000
square miles. North to south, the basin extends about 190 miles, and the east-west width is about 220 miles. The
overall sedimentary section in the province includes rocks of Paleozoic, Mesozoic and Cenozoic age that range in
thickness from about 7,000 ft along the northern margin to about 31,000 ft in the depocenter located in eastern
Mississippi (Ryder, 1994).

The geotectonic history of the basin includes 5 stages:

1) Late Precambrian-Early Cambrian rift with associated deposition of coarse clastics.

2) Middle Cambrian-Mississippian period of stable shelf deposition (7000 ft of shallow water carbonates)
occurring on a passive continental margin.

3) Late Mississippian (Chester) transitional episode; early stages of continental collision, marine deltaic
sedimentation and several major regressive-transgressive cycles.

4) Early-Late (?) Pennsylvanian time of maximum basin subsidence and synorogenic deposition related to
maturation of the Appalachian-Ouachita thrust belts. Following a brief period of barrier bar development,
thick clastic wedges prograded from source areas along the south margin. Abundant coal bed development in
north-central portion of the basin.

5) Permian-Cretaceous erosion/non-deposition ending with Late Cretaceous marine incursion and deposition
into Early Tertiary shallow marine sediments (Mississippi Embayment).

Figure 12 shows a regional cross section of Mississippian strata across northwestern Alabama. The Black
Warrior basin was first downwarped in the Late Mississippian-Early Pennsylvanian and then subsequently filled by
Pennsylvanian shallow marine and terrestrial clastic material shed from rising highlands along its southern margin.
No Permian or early Mesozoic deposits exist in the basin. Indications are that the Black Warrior was uplifted above
sea level in Latest Pennsylvanian-Early Mesozoic time (Montgomery, 1986). Continental break-up during the
Mesozoic resulted in the basin becoming downwarped to the southwest and eventually covered by the Mississippi
Embayment marine transgressive episode (Mancini et al., 1983). Most of the basin and its thrust faulted margins are
concealed beneath Tertiary and Cretaceous rocks of the Gulf coastal plain and the Mississippi embayment.
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HYDROCARBON PRODUCTION

The Black Warrior Basin is very prolific; the Lewis and Carter sandstones (Mississippian Chester Group) are the
most productive (Figure 13). The depth to productive horizons ranges from 2,500 to 5,000 ft. Target intervals are
generally shallower in Alabama than in Mississippi. The Carter Sandstone and other Mississippian productive
intervals extend into deeper basin regions (Bearden and Mancini, 1985). Remarkably high wildcat success rates (50%
and more) and the shallow depths of the primary Late Paleozoic reservoir targets (less than 5,000 ft) keep exploration
interest high.

There are over 90 individual fields producing oil and gas from two principal productive trends. The northerly
trend produces principally from stratigraphic traps. The southern trend produces from structural and combination
traps. One of most prolific fields is the unitized North Blowhorn Creek oil field (Lamar County, Alabama),
completed in the Carter Sandstone which accounts for nearly 80% of the total oil produced in the entire basin
(Montgomery, 1986).

There are multiple gas and gas-condensate reservoirs within the Late Paleozoic clastic units. Eleven individual
reservoirs exist in the Mississippian Chester Group. At least 4 clastic units within the Lower Pennsylvanian
Pottsville Formation produce gas (Figure 13). The clastic units consist of a series of prograding deltaic
environments–delta front, bar finger, and distributary channel sands–separated by transgressive shales. Considerable
lateral variability occurs in the reservoirs, and porosities range from 5% to 17%; permeabilities range from .01 to
100 md. Thickness of individual reservoirs range from less than 10 ft to about 50 ft. The total sandstone thickness is
less than 1,000 ft.

In addition, the deeper Cambro-Ordovician to Devonian carbonate units also produce in certain locations. To date
there have been over 40 deep structural tests (deeper than 10,000 feet) drilled on the Mississippi side of the basin.
Many of these tests encountered significant gas shows from Mississippian and Pennsylvanian sandstone sections and
from deeper Cambro-Ordovician, Silurian and Devonian rocks (Ericksen, 1993; Henderson, 1991). The lower
sections need further exploration, as correlative zones to the west (Hunton and Ellenburger groups) are highly
productive (Montgomery, 1986; Duchscherer, 1972; Devery, 1983).

Also, the Alabama part of the Black Warrior basin is one of the main centers of coalbed degasification in the
U.S. Lower Pottsville rocks yield gas from depths of less than 2,700 ft, and estimated resources range from 20 to 35
Tcf. To date fields in this area have yielded 0.9 Tcf.

BASIN CENTERED GAS EVIDENCE

Basin center gas potential exists in:

a. thick clastic wedges off the carbonate platform, in western Alabama and eastern Mississippi, including the
least-explored deeper depocenters in Mississippi, and

b. micritic and finely crystaline limestones and shale/siltstone intervals within Cambro-Ordovician formations.

The basin covers about 1500 square miles. Gas shows are numerous and widespread throughout the basin. Major
source rocks are fairly organic, amorphous and herbceous-prone pro-delta shales with interbedded sandstone. Available
geochemical data (including total organic carbon (TOC) thermal alteration index) suggest the basin is mature and the
Late Paleozoic shales should be mainly gas prone (Bearden and Mancini, 1985). Henderson (1991) considers the
TOCs of the black shales within the Stone River Limestone (Ordovician) favorable for hydrocarbon generation.
Pennsylvanian sands in southern Pickens County, Alabama, contain large volumes of in-situ gas; low gas recoveries
indicate relatively low permeabilities (R.L. Ericksen, Office of Geology, State of Mississippi, 1999, pers.
commun.) and low porosities (S.D. Champlin, Office of Geology, State of Mississippi, 1999, pers. commun.) of
the rocks. Pressure gradients recorded to date are normal (Ericksen, 1999, pers. commun.; Champlin, 1999, pers.
commun.).



KEY ACCUMULATION PARAMETERS

Identification Eastern U.S., Black Warrior Basin, Cambrian through Pennsylvanian

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Interval includes Mississippian Floyd shale to top of Pennsylvanian 
Pottsville Formation. Eleven reservoirs exist within the Mississippian 
Chester Group, and at least 4 clastic reservoirs occur within the Lower 

Pennsylvanian Pottsville Group. Carter sandstone and other Mississippian 
productive intervals are now known in deeper basin regions.

b. Total Organic Carbons 
(TOCs)

0.07%-2.36% (Upper Mississippian shales); 2.2% Ordovician Stones River 
Group (limestone) shales.

c. Thermal maturity Mixed including amorphous, herbaceous, woody and coaly material. 
Alteration state of the kerogen indicates the thermal history is favorable for 
hydrocarbon generation. Thermal Alteration Index ranges from 2 to 3+,

suggesting that the Upper Mississippian is primarily gas prone.
d. Oil or gas prone Both oil and gas prone.

e. Overall basin maturity Considered mature.

f. Age and lithologies Cambrian through Lower Pennsylvanian: black shales of the Stones River 
Limestone (Ordovician); dark shales of the Conasauga Limestone 
(Cambrian); Chattanooga (Devonian/Mississippian), Floyd Shale including 

Lewis sandstone; Packwood Formation including Carter sandstone and 
Pottsville Formation.

g. Rock extent/quality Basin-wide source and reservoir rock distribution

h. Potential reservoirs

i. Major traps/seals Interbedded Cambro-Ordovician shales; Floyd Shale and interbedded shales 
of the Packwood and Pottsville Formations

j. Petroleum 
generation/migration 
models

k. Depth ranges From 2500 ft in Alabama to over 10,000 ft in the deeper basin regions in 
Mississippi.

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

The Lewis and Carter intervals are the most highly productive, especially in 
the north-central part of the basin (Lamar and Fayette counties, Alabama and 
Monroe, Clay, and Lowndes counties in Mississippi).

Grove Field, Carter sandstone 67 Bcf; Coal Fire Creek, Carter sandstone 19 
Bcf, Lewis sandstone 6.9 Bcf, Fayette sandstone 2.5 Bcf; North Blowhorn 
Creek oil field—Carter sandstone accounts for nearly 80% of the total oil

produced in the entire basin (Montgomery, 1986), Carter sandstone 11.4 Bcf, 
Millerella 10.5 Bcf;  Sanders Ss-one well (10,130-10,164 ft), over 12 Bcf in 
10 years.  Yellow Creek, Devonian chert production; Fairview Field, 

Ordovician (Knox) dolomite—one well, 1.8 MMcf monthly.
b. Cumulative production Cumulative production for Star Field (Lamar County, Alabama) producing 

from a combination trap and numerous horizons:

Economic 
Characteristics:

a. Inert gas content

b. Recovery Low, in south Pickens County, Alabama.

c. Pipeline infrastructure Very good. There are numerous gas lines in the basin.

d. Exploration maturity 
relative to other basins

mature

Producing Formation
(gas sands)  (10/98)

Cumulative Oil
(10/98)

Cumulative Gas
(10/98)

Producing Wells

Carter (Miss) ...................... ............ 99,799 ............. .........19,218,189 .......... ................7

Chandler (Penn)................... ............ 27,543 ............. ............. 226,233 .......... ................0

Fayette (Penn)..................... ....................0 ............. ...............10,400 .......... ................1

Lewis (Miss) ...................... ............ 14,248 ............. .........13,146,529 .......... ................7

Lower Nason (Penn)............. ................ 372............. ............. 757,692 .......... ................1

Lower Millerella (Miss)........ ................ 797............. .......... 1,264,601 .......... ................0

Upper Nason (Penn)............. ................ 128............. ............. 187,983 .......... ................0

Carter Oil (Miss) ................. ............ 78,955 ............. ................. 6838 .......... ................1

Chandler Oil (Penn)............. ................ 865............. ...................... 0 .......... ................0

Total Cumulative Production . .......... 222,707 ............. .........34,818,492 .......... ............... 17



e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial.

f. Porosity/completion 
problems

Most wells are shallow and problem-free. Low porosity occurs in south 
Pickens County, Alabama (S.D. Champlin and R.L. Ericksen, Office of 
Geology, State of Mississippi, 1999, personal communication).

g. Permeability 0.01 to 100 md

h. Porosity 5-17%
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CENTRAL ALASKA BASINS

GEOLOGIC SETTING

The interior basins of Alaska cover a broad area extending from the Canadian border on the east to the Bering
Sea on the west. There are a number of basins (Kandik, Yukon-Koyukuk, Kuskokwim, Bethel, Nenana, Tanana) that
have been included in the Central Alaska Province of recent USGS assessments (Figure 14). The Central Alaska
Province covers about 300,000 square miles between the Brooks Range on the north and the Alaska Range on the
south (Stanley, 1996).

Central Alaskan geology is complex and varied, characterized by fold and thrust belts. Diverse crustal terranes
formed along the ancestral North American cratonic margin, and structural deformation in this region is often severe
(Magoon, 1993). Much of central Alaska experienced deformation in late Cretaceous to early Tertiary time (Stanley,
1996). The basins include areas of complexly deformed and locally metamorphosed flysch deposits underlying thick
Cenozoic nonmarine sediments (Kirschner, 1988).

Three types of basins occur within the central Alaska (Magoon and Kirschner, 1990):

1. Segments of the Cordilleran fold and thrust belt. The Kandik basin represents such a segment, and is
characterized by thrust-faulted anticlines that largely affected clastic and carbonate reservoirs of Paleozoic to
Tertiary age. The right-lateral Tintina fault truncates the basin on the southwest (Magoon, 1993).

2. Mesozoic flysch basins. The flysch belts and flysch terranes represent volcanic-plutonic arc-basin deposits
(Magoon and Kirschner, 1990). The flysch belts of the Yukon-Koyukuk, Kuskokwim, and Bethel basins
consist of deep marine turbidite sandstones and shales, shallow marine alluvial fans, and coal bearing deltaic
and fluvial facies (Stanley, 1996).

3. Cenozoic basins. These consist of undeformed to moderately deformed strata reflecting a distinctive gravity
low (Magoon and Kirschner, 1990). They include a thick sequence of Tertiary and Quaternary rocks
overlying Precambrian to Mesozoic igneous and metamorphic rocks (Stanley, 1996).

The stratigraphic section consists of a sequence of Precambrian rocks overlain by a succession of Paleozoic to
Cenozoic sediments. Figure 15 illustrates the generalized stratigraphic nomenclature common across the Central
Alaska province. The Kandik basin contains the thickest stratigraphic section, with Proterozoic to Cenozoic rocks
having a cumulative thickness greater than 40,000 feet (Hite, 1997). The Paleozoic section is approximately 15,000
feet thick. An unconformity at the top of the McCann Hill chert separates the Lower Paleozoic continental margin
sediments from the overlying Upper Devonian to Permian foreland basin sequence (Hite, 1997). The Nenana and
Middle Tanana basins contain an assemblage of sedimentary rocks from the Middle and Lower Miocene to Pliocene
Usibelli group, which nonconformably overlie Precambrian and Paleozoic rocks (Stanley et al., 1990). The Bethel
and Yukon-Koyukuk basins contain thick, widely distributed Cretaceous strata, including a large volume of volcanic
rocks. Basal andesitic rocks are overlain by about 10,000 feet of graywacke and mudstones of lower Cretaceous
Albian age (Patton, 1971).
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HYDROCARBON POTENTIAL

There is no known hydrocarbon production in the basins of central Alaska. Drilling is very sparse, but the few
wells drilled have encountered numerous shows of oil and gas. Other similar regions in Alaska are richly productive.
Exploration efforts began in the Central Alaska basins as a result of hydrocarbon discoveries on the North Slope.
Cretaceous strata similar to those on the North Slope exist beneath alluvial lowlands. Operators drilled a 12,000 foot
well near Nulato on the Yukon River, and a 15,000 foot hole in the Yukon-Koyukuk basin. Neither wells had
commercial shows (Patton, 1971).

The sedimentary sequences in central Alaskan basins may provide favorable settings for basin-centered
hydrocarbon accumulations. Reservoir rocks in the Tertiary basins of central Alaska may be similar to the reservoirs
in the producing fields of the Cook Inlet-Beluga-Sterling play (Magoon and Kirschner, 1990).

The Kandik and Middle Tanana basins appear to have the greatest hydrocarbon potential (Grether and Morgan,
1988). The Kandik and Yukon Flats basins may contain significant reserves of oil and gas within a 40,000 feet thick
sedimentary package.

Three exploratory wells have been drilled in the Kandik basin. These wells encountered some porosity and
bitumen in Devonian carbonates (DiBona and Kirschner, 1984). The Triassic Glenn Shale in the Kandik basin is an
organic equivalent to the Shublik Formation of the North Slope and may have generated as much as 1.5 billion
barrels of oil per cubic mile of sediment (Hite, 1997). In the Middle Tanana basin, only two exploratory wells have
been drilled–the Unocal Nanana No. 1, and the ARCO Totek Hills No. 1. Both wells penetrated a thick Tertiary coal-
bearing section of the Usibelli Group and terminated in metamorphic basement (Smith, 1995). The ARCO Totek
Hills well was drilled on the basin flank and passed through 3,015 feet of Tertiary rocks. The sandstones averaged
17% porosity and 11 md permeability. The claystones contained Type II kerogen and indicate some oil potential
(Grether and Morgan, 1988). Smith (1995) suggests that Tertiary coals of the Yukon Flats, Nenana, and Middle
Tanana basins provide opportunities for commercial gas production.

Three hypothetical petroleum systems occur in central Alaska (Stanley, 1996):

1. Cenozoic gas. This system includes organically rich source rocks and has a potential for nonassociated gas
in undeformed to moderately deformed strata.

2. Mesozoic gas. This system lies within sequences of flysch deposits, particularly in the Yukon-Koyukuk and
Kuskokwim basins where various authors have reported lateral facies changes from deep marine turbidites to
deltaic and shallow marine sediments (Patton, 1971; Nilsen, 1989; and Box and Elder, 1992). These facies
changes indicate possible stratigraphic traps and may contain a basin-centered gas accumulation. The
Benedum Nulato Unit No. 1 well drilled in the Koyukuk basin penetrated gas-prone kerogens in the
Cretaceous section (Stanley, 1996).

3. Paleozoic oil. This system includes Ordovician, Silurian and Devonian graptolitic shales similar to ones
found in basins elsewhere in North America, the Middle East and North Africa that contain oil-prone
kerogen (Klemme and Ulmishek, 1991). These rocks may be potential sources for oil, and if heated
sufficiently, a source for natural gas as well.



47

EVIDENCE FOR BASIN-CENTERED GAS

In the central Alaska basins, basin-centered hydrocarbon accumulations potentially exist within thick fluvial and
lacustrine units: sandstones, conglomeratic sandstones, turbidites, shales, siltstones and coals. Available source and
maturation data (TOC, TAI, Ro, and Tmax) indicate that the basins are marginally mature to overmature (Stanley et
al., 1990; Smith, 1995. However, Stanley (1996) believes that the late Cretaceous and Tertiary source rocks are
thermally immature.

The Kandik and Middle Tanana basins appear to have the most potential for basin-centered gas accumulation. In
the Middle Tanana basin, Stanley et al. 1990 estimate the top of the oil window (Ro = 0.6) occurs at depths
exceeding 4,500 ft. Vitrinite reflectance values in the Kandik basin fall within the gas generation window
(Figure 16). In the Middle Tanana basin, data from the ARCO Totek Hills No. 1 well indicates the presence of
Types II and III kerogen, indicating the Usibelli Group strata may be oil and gas-prone. Based on present information
regarding thermal maturity, wells drilled in the deeper parts of the central Alaska basins may encounter strata buried
below the top of the oil window, and therefore, potentially encounter basin-centered hydrocarbon accumulations.



KEY ACCUMULATION PARAMETERS

Identification Central Alaska, Interior basins, Paleozoic, Upper Triassic, and Tertiary 
potential basin-centered gas accumulations

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Ford Lake shale, Calico Bluff, Glenn Shale (Devonian to Jurassic), Usibelli 
Group (Tertiary); Kerogen types:  II, III, and IV.  Reservoir:  Nation River, 
Calico Bluff, shallow marine limestones of the Permian Tahkandit

Formation, unnamed sandstones of Cretaceous and Tertiary ages.
b. Total Organic Carbons 

(TOCs)
Kandik basin:  7% (Glenn Shale); Holitna basin:  0.61 to 1.59% (Cretaceous 
Kuskokwim group); Middle Tanana basin:  3.6% (Sanctuary formation of 
Tertiary Usibelli group), outcrop:  0.5 to 3.5%.

c. Thermal maturity Kandik basin:  Tmax = 427-579°C, Ro = 0.8% (mean); Middle Tanana basin:  
Tmax = 414 to 434° C, Ro = 0.6% (below 4500 ft depth).

d. Oil or gas prone Primarily oil prone; however, level of maturity probably reaches the "gas 
window."

e. Overall basin maturity Marginally mature to overmature (similar to North Slope), probably in the 
deep parts of the basins and in shallower areas near high heatflow pathways; 
marginally immature on basin flanks where burial depths have been limited.

f. Age and lithologies Early Cambrian to late Permian (sandstones, shales and carbonates), Upper 
Cretaceous to Tertiary (sandstones, conglomeratic sandstones, shales, coals 
and siltstones).

g. Rock extent/quality Basin-wide source and reservoir rock distribution; highly variable rock 
quality is anticipated as exists on the North Slope, including problems with 
silica cementation, siderite cementation, calcite cementation, and swelling 
and moveable clays.

h. Potential reservoirs No production exists; however, potential reservoirs include  Proterozoic 
Tindir group; Paleozoic carbonates (including Devonian Nation River, 
Mississippian and Pennsylvanian Calico Bluff formation); shallow marine

limestones of the Permian Tahkandit formation; Cretaceous Kandik group; 
Tertiary Usibelli group; and other unnamed sandstones of Cretaceous and 
Tertiary ages.

i. Major traps/seals Structural and stratigraphic, Devonian and Pennsylvanian argillites, shales, 
siltstones and mudstones of Cretaceous and Tertiary ages.

j. Petroleum 
generation/migration 
models

Weimer's (1996) "Cooking Pot" model with current hydrocarbon generation 
and relatively short distance migration and Meissner's (1978) Bakken shale 
expulsion model.

k. Depth ranges Surface to 40,000 ft, in some Tertiary basins, top of the oil generation 
window may range from 5,000 to 10,000 ft, depending upon thermal 
gradients and vitrinite reflectance values.

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure Non-existent, except for the trans-Alaska oil pipeline.

d. Exploration maturity 
relative to other basins

Immature

e. Sediment consolidation Moderate or better consolidation.

f. Porosity/completion 
problems

Unknown due to no known completions.

g. Permeability

h. Porosity
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CHUAR GROUP (PRECAMBRIAN PARADOX BASIN)

GEOLOGIC SETTING

The Late Proterozoic Chuar Group extends from northern Arizona into southwestern Wyoming. Figure 17
depicts a map of the regional extent and outcrop locations of the Chuar rocks. Exposures in the Grand Canyon reach
a thickness of approximately 5,370 ft, and the rocks consist of organic-rich gray-black shale and siltstone interbedded
with sandstones and cryptalgal and stromatolitic carbonates (Reynolds et al., 1988; Palacas, 1992). The Chuar Group
contains the Galeros Formation and the overlying Kwagunt Formation (Figure 18). The lithologies indicate various
cyclical depositional environments, including a sediment-starved basin rich in organic material, coastal and alluvial
plains, paludal swamp, and nearshore marine. Deposition of the Chuar Group occurred on a marine embayment on
the passive edge of a continent (Reynolds et al., 1988).

HYDROCARBON PRODUCTION

There have been some exploratory wells that penetrated the Chuar, but no production. Shows and tests of this
section are rare. Geochemical analyses of outcrop samples from the Walcott Member  of the Kwagunt Formation
indicate good to excellent source-rock potential and thermal maturity for oil generation. Tmax values range from 424
to 452 °C. Total organic carbon values (TOCs) average ~ 3.0 %, with highs ranging from 8.0 to 10.0 %. Samples
from the upper part of the Walcott yielded higher values than those from the lower part (Palacas, 1992). The
underlying Galeros Formation shows lower TOC values and appears thermally overmature, but still might be within
the window for gas generation.

EVIDENCE FOR BASIN-CENTERED GAS

The Walcott Member demonstrates good source-rock  potential and may contain sandstones with good reservoir
quality. Stratigraphic and conventional structural prospects may exist if the source rock is continuous.



KEY ACCUMULATION PARAMETERS

Identification Grand Canyon area, Late Proterozoic, Chuar Group, Kwagunt and Galeros 
Formations

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir The Walcott Member may be a source rock; interbedded sandstones may be 
reservoirs.

b. Total Organic Carbons 
(TOCs)

Range from 1.0 % to 10.0%  (average ~ 3.0%) in outcrop samples of the  
Kwagunt Formation.  The values  for the Galeros Formation are not 
available. 

c. Thermal maturity Tmax values in the Walcott Member of the Kwagunt Formation range from 
424 to 452° C.

d. Oil or gas prone The Walcott Member is oil prone. The lower portions of
the Kwagunt Formation and the Galeros Formation are gas-prone.

e. Overall basin maturity

f. Age and lithologies

g. Rock extent/quality

h. Potential reservoirs

i. Major traps/seals

j. Petroleum 
generation/migration 
models

k. Depth ranges

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure

d. Exploration maturity 
relative to other basins

Because of the virtually untested nature of the deposit, it is immature.

e. Sediment consolidation

f. Porosity/completion 
problems

g. Permeability

h. Porosity
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COLUMBIA BASIN

GEOLOGIC SETTING

The Columbia Basin is located in south-central to southwestern Washington, northeastern Oregon, and western
Idaho (Figure 19). Johnson et al. (1993) defined the basin as a broad low-lying area between the Cascade Range to
the west, the Rocky Mountains to the east, the Okanogan highlands to the north, the Blue Mountains to the south,
the western end of the Yakima fold belt, and the eastern limit of the Palouse slope.

Within the Columbia Basin, Johnson et al. (1997) postulated a basin-centered gas deposit bounded by the
Chumstick basin and Swauk basin to the northwest, the easterly apron of the Cascade Range and a projection of the
Straight Creek fault zone to the west and southwest, the Columbia River and part of the Blue Mountains to the
south, and the projection of the Entiat fault to the east and northeast (Figure 20) .

The sedimentary rocks in the basin are covered by up to 20,000 ft of Miocene basalt that originated from dike
systems near the Washington-Oregon-Idaho border area approximately 6.5 to 16.5 ma (Figure 21) (Johnson et al.,
1997). Mesozoic sediments underlie the basalts. Rocks associated with subduction complexes, volcanic island arcs,
and ophiolites and other sedimentary packages indicate a complex history of accretion of allochthonous terranes and
arc tectonism. Sediments crop out along the northern, eastern, and southern margins of the basalt plateau and
probably underlie the entire plateau.

Development of the Idaho Batholith in Cretaceous time and unconformable deposition of marine sediments
marked the end of accretionary deposition. This was followed by deposition of early Tertiary nonmarine sedimentary
and volcanic rocks. Tectonic activity included volcanism and transtension in northeastern Washington, strike-slip
faulting and folding in central and western Washington, and prolific volcanism in central Oregon. Paleocene to
Eocene arkoses, mudstones and coals were deposited, varying in thickness from a few hundred feet to more than
20,000 ft. Sparse exploratory drilling and magnetotelluric data suggest that an average 5,000 to 10,000 ft of
sedimentary rocks exist below the basalts in central Washington (Tennyson, 1996).

The western margin of the Columbia plateau contains Oligocene to Quaternary volcanic rocks of the Cascade arc
complex. Deformation of the basalts occurred with folding and reverse faulting in the western part of the plateau
(Tennyson, 1996).

HYDROCARBON PRODUCTION

The Rattlesnake Hills field is the only commercial gas field producing in the Columbia Basin. The field was
discovered in 1913 and developed in 1930, and produced approximately 1.3 BCFG through 1941 from depths ranging
between 700 ft and 1300 ft. The gas was mostly methane and 10% carbon dioxide. A faulted anticlinal structure
trapped the gas in a vesicular basaltic zone thought to be clay sealed. Johnson et al. (1993) believe the gas migrated
from Eocene coals buried below the basalts.

EVIDENCE FOR BASIN-CENTERED GAS

Tests in deep wells in the Yakima-Pasco area yielded gas at depths ranging from 8,300 to 12,700 ft. Lingley
(1995) estimated pressure gradients of 0.42 psi/ft to 0.45 psi/ft at 5,000 to 10,000 feet and 0.62 psi/ft at 14,000 ft
depth, indicating moderate overpressures in the deep part of the basin. Johnson et al. (1997) note most drill-stem
tests recovered water-free gas, but some did recover water.

Source rocks for this accumulation may be Eocene coals and carbonaceous shales interbedded with arkosic fluvial
sandstones. Eocene sediments may reach  a depth of 17,000 ft in the center of the basin.



KEY ACCUMULATION PARAMETERS

Identification Eastern Oregon-Washington Province, Columbia Plateau/Basin, basin-
centered gas play

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Eocene Swauk, Chumstick, Roslyn, and Manatash formations

b. Total Organic Carbons 
(TOCs)

Values range from 0 to 17%.

c. Thermal maturity Ro 0.5 – 1.43

d. Oil or gas prone Gas prone; mostly type III kerogens with limited type II kerogen

e. Overall basin maturity Maturation levels are moderate, maturation levels increase west of the basin 
toward the crest of the Cascade mountains. Possibly overmature in the 
deepest parts of the basin.

f. Age and lithologies Eocene, arkosic sands, coals, and shales.

g. Rock extent/quality Wide source and reservoir rock distribution, rock quality is unknown except 
around basin margins and in the few wells that have been drilled.  Expected 
reservoir quality is variable depending upon clay content, zeolite alteration 

and interbedded shales and coals.
h. Potential reservoirs None presently; Rattlesnake Hills gas field produced 1.3 BCFG from 1930 to 

1941 from the Miocene age Columbia River Basalt Group. Vertical 
migration of gas from Eocene source rocks buried below the basalt flows.

i. Major traps/seals Interbedded Eocene age shales and coals.

j. Petroleum 
generation/migration 
models

both in-situ generation and long distance migration of gases shales and coals.  
Hydrocarbon generation is probably ongoing at depths below 12,000 feet. 
Geothermal gradients range from 28 to 58° C per km (Lingley, 1995).

Weimer’s (1996) Denver basin cooking pot model might apply.

k. Depth ranges Accumulation depths are thought to range from 8300 feet to 17,000 feet.

l. Pressure gradients range from estimated 0.42 psi/ft at 5,000 ft depth to 0.45 psi/ft at 10,000 ft to 
0.62 psi/ft at 14,000 ft.  This conflicts with Johnson et al. (1997) which 
reported overpressuring occurring at depths of 8,300 ft to 12,700 ft.



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Rattlesnake Hills gas field

b. Cumulative production Only production to date was from 1930-1941.  Rattlesnake Hills field 
produced 1.3 BCFG from Miocene age basalts.

Economic 
Characteristics:

a. Inert gas content Gases from the Rattlesnake Hills field were reported to contain 10% nitrogen 
by Wagner (1966); Hammer (1934) reported 2.45% nitrogen and 0.15% 
carbon dioxide.

b. Recovery Recoveries may vary depending upon permeability, porosity and depth; 
diagenetic alteration may increase with depth.

c. Pipeline infrastructure Poor

d. Exploration maturity 
relative to other basins

Immature

e. Sediment consolidation Most rocks are well indurated.

f. Porosity/completion 
problems

Shales, clay and mica rich arcosic sands have high alteration potential, may 
have swelling clays and will produce migrating fines problems, average 
porosities range from 6 to 15 percent.  Shales and coals are interbedded with

sands.  Zeolite and chlorite alteration has been reported.
g. Permeability Outcrop measurements range from 0.02 to 0.8 md.

h. Porosity
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COLVILLE BASIN, ALASKA

GEOLOGIC SETTING

The western Colville Basin covers about 64,000 square miles of the western half of Alaska’s North Slope. The
Herald Arch and the Chukchi Platform form the basin’s western boundary and, west of Icy Cape and Point Barrow,
“bend” the offshore part of the Colville trough axis northward  into the Hanna Trough (Figure 22). The Barrow Arch
borders the Colville’s northern flank eastward from the Chukchi Sea, and parallels the present Arctic Ocean coastline
almost to the Canadian border. The Brooks Range thrust belt defines the basin’s eastern and southern limits, and
partly overrides the Colville’s south flank along the Southern Foothills (Figure 23).

The North Slope is primarily a composite basin whose northern edge includes late Paleozoic and Mesozoic
continental-margin deposits overlain by Cretaceous and Tertiary foreland-basin sediments (Figure 24) (Bird, 1991).
The Colville Basin itself appears generally asymmetrical, with the strata thickest along the Southern Foothills belt
and generally thinning northward over the Barrow Arch (Figure 25).

Uplift of the Brooks Range fold and thrust belt began during the Late Jurassic and shed sediments northward into
the foredeep Colville Basin. Termed the Brookian Sequence, these deposits are mostly clastic and unconformably
overlie older Ellesmerian rocks along the Barrow Arch (Figure 26). The Ellesmerian Sequence includes sandstones,
shales, and up to 25% carbonates. Both sequences contain substantial amounts of good to excellent quality source
rocks in close physical and stratigraphic proximity to porous reservoir units (Figure 25). Colville Basin stratigraphy
includes all of the Brookian Sequence and most of the Ellesmerian Sequence rocks. At the basin axis, the total
combined thickness of the Ellesmerian and Brookian strata may exceed 32,000 ft (Bird, 1991).

HYDROCARBON PRODUCTION

Outside the Prudhoe Bay complex near the northeast end of the Colville Basin, there is little production on the
North Slope. The Prudhoe Bay Field contains recoverable petroleum reserves exceeding 13 BBO; oil production
generally comes from the Ivishak Sand member of the Upper Ellesmerian Sadlerochit Group, and from the Lisburne
Group of carbonates in the Lower Ellesmerian.

The South Barrow gas field presently supplies domestic gas only to the town of Barrow.

EVIDENCE FOR BASIN-CENTERED GAS

To date, exploration outfits have drilled 41 wells deeper than 4,000 ft in and around the Colville Basin. Many
wells had gas or oil shows, and consequently 13 prospects have been identified as potentially capable of yielding gas.
Several wells produce gas at rates above 2 MMCFD.

Equivalent rocks in Colville strata have already sourced fields along the Barrow Arch, including Prudhoe Bay.
Bird (1991) and Sedivy et al. (1987) reported total organic carbon (TOC) content for Colville source rocks generally
ranged from 1.5 to 3.0 wt%, with some oil shales in the Endicott Group reaching 16%. Some of those same source
rocks have created overpressure conditions in the Prudhoe Bay field and could have charged a basin-centered
accumulation in the Colville Basin (Gognat, 1999, Global GeoData LLC, personal communication).



KEY ACCUMULATION PARAMETERS

Identification Northern Alaska, Colville Basin, possible basin-centered accumulation

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Sources: Upper Triassic and Neocomian rocks. Reservoirs: Ivishak Sand, 
Kuparuk River/Kemik Sands, Sag River Sand, sands within the Kingak 
Shale, plus sands within the Nanushuk Group, Colville Group, and 
Sagavanirktok Formation (Figures 25, 26, and 27).

b. Total Organic Carbons 
(TOCs)

Range from 1.5 to 3.0%; some highly organic "paper shales"/oil shale range 
up to 16% (Sedivy et al., 1987; Bird, 1991).

c. Thermal maturity Maturity over much of the area falls within the peak-oil to peak-gas 
generation stage, with Ro ±2.0 (Figure 25, Figure 27, and Figure 28). The 
deepest parts of the basin may be cracking previously generated oil into gas.

d. Oil or gas prone Both oil and gas prone.

e. Overall basin maturity Mature; the base of the dry gas zone in the central Colville Basin area 
probably occurs below a depth of 19,500 ft (Johnsson et al., 1993).

f. Age and lithologies Triassic and younger sands; Mississippian Endicott Group clastic and 
carbonate rocks.

g. Rock extent/quality Potential 30,000 sq mi source and reservoir-rock distribution. Sandstones in 
the Triassic and younger strata often exceed 20% porosity (Gognat, 1999, 
Global Geodata LLC, personal communication).

h. Potential reservoirs Ivishak Sand, Kuparuk River/Kemik Sands, Sag River Sand, sands within the 
Kingak Shale, plus sands within the Nanushuk Group, Colville Group, and 
Sagavanirktok Formation (Figures 25, 26,  and 27).

i. Major traps/seals All traditional hydrocarbon traps.

j. Petroleum 
generation/migration 
models

The Weimer (1996) “Cooking Pot” model, where generated hydrocarbons 
are expelled into the surrounding reservoir rocks.

k. Depth ranges 4,000 through 21,000 ft. Some gas production from depths shallower than 
4.000 ft, but occurring from smaller structural and stratigraphic traps 
unrepresentative of basin-centered accumulations (Figure 29).

l. Pressure gradients Unknown, but many Prudhoe Bay wells intercept overpressured strata and 
some Brooks Range foothills wells may have shown overpressuring.



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

South Barrow, Fish Creek, Umiat, Meade, Simpson, Wolf Creek, Gubik, 
Square Lake, East Umiat, East Barrow, East Kurupa, Eagle Creek, Walakpa, 
and Sikulik (Figure 30).

b. Cumulative production See Figure 31. Outside the Prudhoe Bay producing complex, there is little 
production on the North Slope. South Barrow Gas field presently supplies 
only domestic gas to the town of Barrow.

Economic 
Characteristics:

a. Inert gas content Possible, but unknown.

b. Recovery Unknown

c. Pipeline infrastructure Poor to non-existent.

d. Exploration maturity 
relative to other basins

Immature

e. Sediment consolidation Moderate to good.

f. Porosity/completion 
problems

Unknown

g. Permeability Probably high, but variable.

h. Porosity Highly variable, but porosity in reservoirs exceeds 20% (Gognat, 1999, 
Global Geodata LLC, personal communication).
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Figure 24. Geologic map of the Colville Basin and the North Slope, Alaska. After Molenaar et al. (1988) and Bird (1991).
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Figure 25. Cross-section A-A' across western North Slope, Alaska, including the Colville Basin (Figure 22 shows the section location). Section shows
diagrammatic structure, generalized stratigraphy, petroleum fields, and wells. Vitrinite isograds show disposition of the oil window 
(0.6 - 1.3 %Ro) and the condensate window (1.3 - 2.0 %Ro).  After Bird (1991).
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Figure 26. Generalized stratigraphic column of North Slope subterrane (Arctic Alaska terrane). Jurassic 
Simpson and Barrow sandstones are of local usage. Brookian sequence depicts North Slope units 
only; less well-known Brookian rocks in Lisburne Peninsula and northeastern Brooks Range are not
shown. After Bird (1991) and Moore et al. (1994).
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Figure 27. Present-day and Late Cretaceous cross-sections B-B' (location on Figure 23) of across Colville Basin and Barrow Arch. Upper illustration shows
sampled wells (names and locations on Figure 30) and depths for vitrinite reflectance (%Ro) reference values (Bartberger and Dyman, in press).
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Figure 28. Thermal maturity of subsurface Shublik Formation and Kingak Shale, Colville Basin and western North Slope, Alaska. After Molenaar et 
al., (1988) and Bird (1994).
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Figure 29. Map of Colville Basin showing estimated subsea depth to top of overpressure in selected wells. Data from some US Navy wells (1944-53),
indicated by question marks, are suspect (see Bartberger and Dyman, in press).
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Figure 30. Map of Colville Basin and North Slope, Alaska, showing well locations and fields. After Bird (1994) and Bartberger and Dyman (in press).
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Well

Figure 31. Map of Colville Basin, Alaska, showing fluid-pressure gradients (in psi/ft) calculated from shut-in pressures measured during drill stem
and formation tests; depth of tests; stratigraphic unit tested; and summary of recovery (Bartberger and Dyman, in press).
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COOK INLET, ALASKA

GEOLOGIC SETTING

The Cook Inlet basin is a narrow elongate trough of Mesozoic and Tertiary sediments, covering approximately
11,000 square miles in south-central Alaska (Figure 32). The basin trends NNE-SSW and is bounded on the
northwest by granitic batholiths of the Alaska-Aleutian range and the Talkeetna mountains, and on the southeast by
the Chugach terrane that makes up the Kenai Mountains (Magoon, 1994). The Border Ranges, Castle Mountain, and
Bruin Bay faults are major structural features  (Figure 32) (Boss et al., 1975). The Outer Continent Shelf area lies
between these faults and contains anticlinal structures and faults that may be potential traps for hydrocarbons
(Magoon, 1976).

Dickinson (1971) described the basin as a trench-arc gap type: a Cenozoic residual forearc basin in a convergent
continental margin along the northwest Pacific Rim. Cook Inlet basin development began as a backarc basin during
the Jurassic, evolving to a forearc basin in the Cenozoic (Magoon, 1994). Numerous high angle reverse faults
indicate compression throughout the Mesozoic and Cenozoic.

Kelly and Halbouty (1966) estimated the maximum sediment thickness in the deepest part of the basin to be
40,000 ft. Cook Inlet sediments range in age from Upper Triassic to Recent, but consist mostly of Upper Jurassic
and Tertiary rocks (Figure 33). The Middle and Upper Jurassic units are thick, but a significant mid-Cretaceous
unconformity has removed the Lower Cretaceous section. Boss et al. (1975) considered the Lower Jurassic volcanic
rocks to be the economic "basement.”

During the Tertiary uplift and erosion occurred continuously until termination by a widespread Late Pliocene-
Pleistocene orogeny. The Tertiary section is part of the Kenai Group, which is separated from the West Foreland
Formation (Eocene) by a thin but widespread unconformity marked by a basal conglomerate. The Kenai Group
consists of three formations: Tyonek, Beluga, and Sterling. The Tyonek Formation includes the Hemlock Sandstone
Member.

HYDROCARBON PRODUCTION

The most significant hydrocarbon production in the Cook Inlet basin occurs in Tertiary rocks which reach a
maximum thickness of 25,000 ft in the deepest part of the basin (Smith, 1995). These rocks consist of a thick
sequence of alluvial deposits. Of the total oil produced to 1994, Magoon (1994) noted that 80% originated from the
Hemlock Conglomerate, 20% from the Lower Tyonek, and minor amounts from the West Foreland Formation.
Discovered resources exceed 1.2 BBO. Unassociated natural gas occurs in shallower younger reservoirs and accounts
for most of the Cook Inlet gas production (Magoon and Kirchner, 1990). This gas is found in the Beluga and
Sterling formations, may be biogenic, and primarily originates from Tertiary coals (Molenaar, 1996). Only minor
amounts of oil have been produced from Mesozoic rocks. The Middle Chuitna Formation in the upper Cook Inlet
and the Upper Triassic-Middle Jurassic rocks in the lower Cook Inlet are the source rocks for oil. Siltstones and
claystones associated with coals compose the seals.

Bird (1996) identified three petroleum systems in the Cook Inlet

1. Hemlock-Tyonek oil.

2. Beluga-Sterling gas.

3. Late Mesozoic oil. This system includes Lower Jurassic to Upper Cretaceous rocks. This interval appears to
be the only stratigraphic section capable of supporting a basin-centered gas play in the Cook Inlet basin.
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To date, production in the Late Mesozoic has been marginal because of poor-quality reservoir rocks. Limited
production has occurred from marine and turbidite sandstones within the Upper Cretaceous Matanuska and Kaguyak
Formations, Lower Cretaceous sandstones, and the Upper Jurassic Naknek Formation. Lateral permeability barriers
within siltstones seal these reservoirs and the reservoirs in the unconformably overlying Lower Tertiary West
Foreland Formation. However, most of these fields are faulted anticlinal structures truncated by overlying Tertiary
rocks. Oil was generated during Eocene and Pliocene periods (Magoon et al., 1996a).

The Tertiary section (Beluga-Sterling gas and Tyonek/Paleocene Chickaloon coals) in the upper Cook Inlet
includes coals as source rocks within an area described by Molenaar (1996) as thermally immature. This area contains
gas fields having localized sources. In contrast, Smith (1995) reported carbon isotope analyses of gas from coals in
the Tyonek Formation that indicated both biogenic and thermogenic origins. The reported gas volumes from coals
ranged from 63 standard cubic feet per ton (scf/ton) at 521 ft in depth to 245 scf/ton at 1,236 ft in depth.

EVIDENCE FOR BASIN-CENTERED GAS

Although few holes were drilled in the central trough of the Cook Inlet, limited data (mostly from the COST
No. 1 well shown in Figure 32) indicates a significant increase in thermal maturity to Ro = 0.87 in the lower part of
the Upper Jurassic Naknek Formation. Thermal maturity of Middle Jurassic source rocks ranges from immature to
mature on the flanks of the basin and postmature in the deepest part of the basin (Magoon, 1994). However,
conflicting interpretations place the top of the oil window (Ro = 0.6) at disparate depths: Magoon (1994) projects the
depth at 21,000 ft in the vicinity of the Swanson River oil field (Figure 34), whereas  Johnsson et al. (1993) place
the oil window top at 5,000 m depth (about 16,400 ft) (Figure 35). This difference dramatically changes the basin
area that may be thermally mature.

Frequent hydrocarbon shows occur within the Middle Jurassic interval. Significant variations in pressure
gradients occur within the current oil and gas producing fields and flank the area of the potential basin-centered
accumulation. Although this does not directly indicate pressure seals occur in the central trough of the Cook Inlet,
the data suggests that lateral permeability barriers do exist within the conventionally trapped hydrocarbon
accumulations. Source rocks within the Middle Jurassic Tuxedni Group indicate adequate but somewhat limited
source potential (TOC content of 0.8 to 2.1 weight %). A normal geothermal gradient of 12.5 °F per 1000 ft (in the
COST No. 1 well) also appears to lessen the possibility of a basin-centered accumulation at shallow depths.

Depending on the oil generation window interpretation, basin-centered gas accumulations in the Cook Inlet may
potentially range in depth from less than 3,280-19,685 ft for the upper limit, to 41,891 ft for the floor.



KEY ACCUMULATION PARAMETERS

Identification Southern Alaska, Cook Inlet basin, lower Jurassic to upper Cretaceous 
overpressure

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Middle Jurassic Tuxedni group, Reservoirs - Lower Jurassic Talkeetna Fm, 
Middle Jurassic Tuxedni Group, Upper Jurassic Naknek Formation, and 
Upper Cretaceous Matanuska Formation

b. Total Organic Carbons 
(TOCs)

0.8-2.1 weight%  (Middle Jurassic Tuxedni group).

c. Thermal maturity Tmax from lower part of Naknek formation in the Cost #1 well is 
approximately 483° C; Ro maximum is approximately 0.87%.

d. Oil or gas prone Both oil and gas prone.

e. Overall basin maturity Immature to mature, anticipated to be postmature in the deepest part of the 
basin.

f. Age and lithologies Lower Jurassic Talkeetna formation (massive volcanic conglomerates, tuffs 
and sandstones), Middle Jurassic Tuxedni group (marine sandstone, 
conglomerates, siltstones and shales), Upper Jurassic Naknek formation 

(shallow marine fine grained, cross-bedded sandstone) Upper Cretaceous 
Matanuska formation (shallow marine turbidite sandstones).

g. Rock extent/quality Marginal basin wide source and variable reservoir rock distribution

h. Potential reservoirs Talkeetna formation, Tuxedni group, Naknek formation and Matanuska 
formation

i. Major traps/seals Tuxedni group

j. Petroleum 
generation/migration 
models

Weimer's (1996) "Cooking Pot" model with current hydrocarbon generation 
and relatively short distance migration.

k. Depth ranges 3,280 to 41,900 ft (6 to11 km).

l. Pressure gradients Granite Point field (Tyonek formation) 0.476 to 0.503 psi; McArthur River 
field (Hemlock formation) 0.399 to 0.454 psi; Middle Ground Shoal field 
(Tyonek formation) 0.263 psi, (Hemlock formation) 0.488 psi; Swanson

River field (Hemlock formation) 0.504 to 0.518 psi; Trading Bay field 
(Tyonek formation) 0.487 psi, (Hemlock formation) 0.261 psi. Figure 32 
shows locations of gas and oil fields.



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Only marginal production occurs within the Upper Jurassic Naknek to Upper 
Cretaceous Matanuska formations.

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure Good

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Good to moderate consolidation.

f. Porosity/completion 
problems

Low porosity because of probable clays and migrating fines.

g. Permeability Not available, but expected to be highly variable.

h. Porosity Highly variable
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DENVER BASIN

GEOLOGIC SETTING

The Denver basin is an asymmetric crustal downwarp located mainly in eastern Colorado, western Nebraska and
southeastern Wyoming. It is surrounded by the Rocky Mountain Front Range on the west, the Laramie Range to the
northwest, the Hartville Uplift to the north, the Chadron Arch and Cambridge Arch to the northeast, the Yuma
Uplift to the east, the Los Animas Arch to the southeast, the Apishapa Uplift to the south and the Wet Mountains
Uplift to the southwest (Bookout, 1980). The basin axis runs roughly north-southfrom Cheyenne, Wyoming to
Denver, Colorado (about 320 miles), and the basin width extends about 180 miles (Figures 36 and 37).

The basin’s sedimentary section reaches a maximum thickness of 13,000 ft along the axial trend (Clayton and
Swetland, 1977), and consists mostly of Cretaceous, Permian and Pennsylvanian rocks (Figure 38).

With the onset of the Laramide Orogeny in the Late Cretaceous, the ancestral Denver basin accumulated
sediments that thickened westward (Figure 39). Deposition began with the Upper Cretaceous Fox Hills sandstone and
continued through the Miocene (McCoy, 1953).

The present-day Denver basin has undergone a full cycle of tectonic evolution since the Cambrian: Early
Paleozoic troughs became Late Paleozoic mountain ranges, and Early Paleozoic highs subsided into lows. Late
Paleozoic troughs were uplifted into post-Cretaceous mountain ranges, and Late Paleozoic mountain ranges subsided
into Tertiary and Recent plateaus and low relief basins (McCoy, 1953).

HYDROCARBON PRODUCTION

Cretaceous rocks are the primary strata producing petroleum (Figure 38). This interval consists mostly of deltaic
and marine detrital rocks. Although oil and gas originate from a number of Cretaceous reservoirs, the Lower
Cretaceous "D" and "J" sandstones account for more then 90% of the total oil and gas production of the basin"
(Clayton and Swetland, 1977).

The most significant hydrocarbon production in the Denver basin occurs in the Wattenberg field, where the "J"
Sandstone is the dominant producing horizon (Figure 36). As of June 1998, cumulative production from the
Wattenberg field was 1.5 trillion cubic feet of gas (TCFG), 67 million barrels of oil (MMBO), and 13.3 million
barrels of water (MMBW) at average depths of 7,600 ft for the "J" Sandstone and 5,100 ft for the Hygiene Sandstone
(Petroleum Information Corp., 1998).

Limited oil production occurs above the "D" and "J" in the Graneros Shale, the Greenhorn Limestone, and the
Codell Sandstone. Two members of the overlying Niobrara Formation yield oil–the Fort Hays and the Smoky Hill
members. The fractured Niobrara strata produced significant quantities of hydrocarbons from the Berthoud field (765
MBO and 1.85 BCFG; 4.3 MBW) and the Silo field in southeastern Wyoming (8.5 MMBO and 6.8 BCFG; 3.7
MMBW) (Petroleum Information Corp., 1998).

Figure 37 shows the locations of Niobrara gas fields. Beecher Island field (1,700 ft deep, cumulative production
39.6 BCFG between 1974 and 1998) and Goodland field (900 ft deep) represent shallow Niobrara biogenic gas fields
in eastern Colorado and western Kansas (Figure 37). Oil production from the Niobrara is limited to the west flank of
the basin along the Colorado and Wyoming eastern mountain front (Clayton and Swetland, 1977).
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EVIDENCE FOR BASIN-CENTERED GAS

Field data supports the existence of a basin-centered hydrocarbon accumulation in the Denver basin. Widespread
hydrocarbon shows occur within the interval below the Hygiene sandstone (Figure 40). In the area of the Wattenberg
field, Weimer (1996) reported overpressuring from the top of the Hygiene sandstone to the top of the Muddy
sandstone (Figure 40). These depths conform to a vitrinite reflectance anomaly that Smagala et al. (1984) plotted at
and below the Terry-Hygiene boundary (Figure 41). Geothermal gradients as high as 30°F per 1,000 ft of burial–
nearly double the norm for this basin–also occur in the vicinity of the Wattenberg field (Bookout, 1980). Well data
indicate that the overpressure in the Denver basin has an upper window depth of approximately 4,500 ft. This
overpressured zone eventually pinches out east of the Wattenberg field.

Figure 37 shows biogenic gas fields exists east of the limit of thermally-mature Niobrara source rocks.
Significant underpressuring occurs in this area with reported pressure gradients as low as 0.21 psi/ft at the Beecher
Island field. Lockridge and Scholle (1978) note that Niobrara gas accumulations here are associated with low-relief
anticlinal closures; thus this area has a low potential for continuous-type accumulations.



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountain, Denver Basin, early to late Cretaceous overpressure

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Includes Pierre Shale through Mowry Shale.  "J" (Muddy) Sandstone 
(underpressured) is a probable target at base of overpressure zone.

b. Total Organic Carbons 
(TOCs)

0.3-10.6% (Sharon Springs member of Pierre);  1.3-2.4% (Mowry and Skull 
Creek shales);  5.8% maximum (Smokey Hill chalk member of Niobrara).

c. Thermal maturity Tmax 464 to 401° C, Ro 1.5 to Ro <0.4 (Sharon Springs);  Tmax 433-439° C 
(Mowry and Skull Creek).

d. Oil or gas prone Both oil and gas prone, except near Fort Collins, where Pierre equivalent of 
Sharon Springs is gas prone.  Mowry and Skull Creek are gas prone.

e. Overall basin maturity Considered to be among top Rocky Mtn basins in terms of maturity, along 
with the Powder River and Green River.

f. Age and lithologies Early to Late Cretaceous; Pierre Shale, Niobrara chalk/shale/marl, Mowry 
and Skull Creek shales.

g. Rock extent/quality Basin-wide source and reservoir-rock distribution.

h. Potential reservoirs

i. Major traps/seals Pierre Shale

j. Petroleum 
generation/migration 
models

Weimer's (1996) "Cooking Pot" model

k. Depth ranges Wattenberg "J" avg = 7600 ft, Hygiene = 5100 ft, Silo Niobrara = 8700 ft, 
Beecher Island Niobrara = 1700 ft, Goodland Niobrara = 700 ft. 
Overpressure zone terminates at approximately 4500 ft on the east side of the 
basin.

l. Pressure gradients In the Wattenberg field area, pressure gradients reach about 0.6 psi per ft and 
fall to as low as 0.21 psi per ft in the Beecher Island field on the eastern flank 
of the basin.



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Wattenberg (J Sandstone), Berthoud (Niobrara Chalk), Silo (Niobrara 
Chalk), Beecher Island (Niobrara Chalk).

b. Cumulative production Wattenberg-"J" Sandstone, 67 MMBO, 1.5 TCFG, 13.37 MMBW; Silo field, 
8.45 MMBO, 6.8 BCFG, 3.7 MMBW; Beecher Island, 0 BO, 39.6 BCFG, 
37.9 MMBW; Berthoud field, 765 MBO, 1.86 BCFG, 4.3 MMBW 
(Petroleum Information Production Data, 1998).

Economic 
Characteristics:

a. Inert gas content No high inert gas content

b. Recovery Highly variable

c. Pipeline infrastructure Good

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial, especially in 
the Niobrara Chalk (Pollastro and Martinez, 1985).

f. Porosity/completion 
problems

Chalks & other tight (low permeable rocks) produce where they are naturally 
fractured (Berthoud field).

g. Permeability Deep basin (Wattenberg area), Niobrara chalk, approx. 0.001 to 0.01 md 
(G.L. Nydegger, 1999, G.L. Nydegger and Associates, personal 
communication); eastern flank (Beecher Island field), Niobrara = 1 to 6 md.

h. Porosity Deep basin (Wattenberg area), Niobrara chalk = 6.3%; eastern flank 
(Beecher Island area), Niobrara chalk = 39-42%.
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GREAT BASIN (TERTIARY BASINS)

GEOLOGIC SETTING

The Great Basin is part of the Basin and Range geologic province, which makes up most of Nevada. Figure 42
shows the valleys in the province. The state has undergone complex geological and structural development. At least
four major orogenies affected the area prior to the initiation of Basin and Range extension during the Miocene
(Montgomery, 1988b). Uplift during the Antler orogeny (Late Devonian to Early Mississippian) created a north-
south trending barrier, isolating a foreland basin to the east. Next, the Sonoma Orogeny (Late Permian through Early
Triassic) emplaced the Golconda Allochthon in central Nevada. The Jurassic Nevadan Orogeny involved thrusting and
folding in the central part of the state and ended the marine sedimentation. The Sevier/Laramide episode (Late Jurassic
through the Eocene) resulted in extensive volcanism throughout much of western and central Nevada, and creation of
the Rocky Mountain Thrust Belt. Another period of extensive volcanism began in the Oligocene.

During the Paleozoic era and ending in the Permian, up to 50,000 feet of shallow water carbonate and clastic
rocks were deposited (Peterson, 1988). From the Cretaceous through the Eocene, large lakes formed in the Black
Rock Desert area and in the Carson Sink (Figure 42) and organic-rich rocks were deposited, including the Sheep Pass
Formation (Late Cretaceous–Eocene), the Newark Canyon Formation (Late Cretaceous), and the Elko Formation
(Eocene–Oligocene). In southeast and northwest Nevada, large lakes formed during Miocene and Pliocene time
(Barker, 1996a; Hastings, 1979). These lakes contain organic rich source rocks. Figure 43 shows stratigraphic
columns for two areas in eastern Nevada.

Crustal extension began in the Miocene, forming characteristic Basin and Range structures:  alternating horsts
and grabens (Peterson, 1988). Extensional faulting continues to the present. Block faulting broke up the Sheep Pass,
Newark Canyon and Elko Basins. Their lacustrine and clastic fluvial deposits subsided into deep grabens. Figure 44
shows a cross section across Railroad Valley in east-central Nevada. Several present day valleys contain over 10,000
feet of late Tertiary and Pleistocene fluvial, lacustrine and volcanic valley fill (Peterson, 1988). These Tertiary
lacustrine deposits provided the source rock for several oil fields in Nevada. The Sheep Pass Formation provided both
source and reservoir strata for Eagle Springs Field and source rocks for Trap Springs Fields in Railroad Valley
(Figure 43).

HYDROCARBON PRODUCTION

There are 12 producing oil fields in Nevada at present. Reservoirs include the Garrett Ranch Volcanics, which
produce at Trap Springs Field, and the Sheep Pass Formation, which produces at Eagle Springs Field. Most
exploration has been along the faulted valley margins.

All deep Tertiary basins will probably have at least one good source rock either in the basin, or subcropping
against the basin fill. Barker (1996a) states that Tertiary lacustrine shales and marls from six wells in the Carson
Sink have a TOC range from 0.1 to 3.0%. The rocks have a hydrogen index over 400 mg/gram organic carbon and
are oil prone. There is unusually high heat flow in the area. Strata buried only 3,300 to 6.600 ft deep during the
Pliocene may now be in the oil generation window.
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EVIDENCE FOR BASIN-CENTERED GAS

Gas shows have occurred in many exploration wells, indicating some of these basins have generated gas. Deep
source rocks in the grabens probably lie on the gas-only generation window, because of high geothermal gradients.

The Tertiary Sheep Pass, Newark Canyon and Elko Formations are considered the most prospective for
hydrocarbon generation, migration and trapping (Figure 43). There are other hydrocarbon source rocks in Nevada,
including the Mississippian Chainman Shale, which in Railroad Valley is a partial source for the Eagle Springs
Field and the main source for the Grant Canyon Field. These pre-Tertiary source rocks may have helped charge
possible basin-centered gas accumulations within the Tertiary graben valley fill.

Regional gravity data show several basins that contain thick Tertiary fill. The valley fill is less dense than the
older Paleozoic and Mesozoic strata that crop out in the bordering mountain ranges and form the basement in the
grabens. Jachens and Moring (1990) published gravity maps that show the thickness of Tertiary strata. Figure 45
shows areas with pronounced residual gravity minima that may indicate thick Tertiary strata.

Several valleys in east-central Nevada have anomalously low gravity (Jachens and Moring, 1990). Tertiary
lacustrine valleys are the most prospective for basin-centered gas. Their basin configurations are better known from
seismic data than are other Basin and Range valleys. Some valleys fall within a gravity low, but are not in eastern
Nevada and so remain speculative for basin-centered gas.

The Carson Sink in Western Nevada does not fall within a gravity low, but seismic data indicates 11,000 ft of
Tertiary fill, including organic-rich lacustrine source rocks (Barker, 1996a), and several exploration wells have gas
shows.



KEY ACCUMULATION PARAMETERS

Identification Basin and Range Province; Cenozoic Speculative Basin Centered Gas 
Accumulation

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Organic-rich Tertiary lacustrine shales: Sheep Pass Fm (Paleocene-Eocene), 
Elko Fm (Paleocene), and Newark Canyon Fm (Cretaceous); several 
Paleozoic source rocks may also contribute hydrocarbons to this play 

(Peterson, 1988): Chainman Shale (Mississippian), Pilot Shale (Upper Dev. - 
Lower Miss.), Carbon Ridge Fm (Permian); Webb Fm (Miss.), Woodruff Fm 
(Devonian), Slaven Chert (Devonian), and Vinini Fm (Ordovician)

All deep Tertiary basins will probably have at least one good source rock 
either in the basin, or subcropping against the basin fill.  Barker (1996a) 
states that Tertiary lacustrine shales and marls from 6 wells in the Carson 

Sink have a TOC range from 0.1 – 3.0%. The rocks have a hydrogen index 
over 400 mg/gram organic carbon and are oil prone.  There is unusually high 
heat flow in the area.  Strata buried only 1 to 2 km deep during the 

Pliocene may now be in the oil generation window.
b. Total Organic Carbons 

(TOCs)
Poole and Claypool (1984) report the following TOC values:

c. Thermal maturity The discovery of 12 producing oil and gas fields in Nevada, indicates that 
there are source rocks at depth which have generated hydrocarbons.  In 
Railroad Valley, Poole and Claypool (1984) interpret thermally mature 

conditions below 6,800 feet – extending from Eocene Sheep Pass Fm 
downward into the Mississippian Chainman Shale. Overmature source rocks 
are most likely to be a problem in the deepest parts of this play which may 

have a Paleozoic source rock. For Eagle Springs Field, the initial BHT 
(Bottom Hole Temperature) was 200° F (93° C) at 6400 ft. The temperature 
gradient is 20 deg/1000 ft for the depth interval 6000 – 10,000 ft (Bortz and 

Murray, 1979). The Carson Sink has a geothermal gradient of 25 deg/ 1000 ft 
(Hastings, 1979, p. 520).

Source System or Series Total Organic Carbon
(TOC) (%)

Sheep Pass Fm .............................. Paleocene - Eocene................ ........ 3 - 4 avg, to 9.5 max
Elko Fm ...................................... Eocene - Oligocene (?)........... ........ 33.5 - 38.8 (oil shale)
Newark Canyon Fm ....................... Cretaceous........................... ........ to 5.66
Chainman Shale ............................ Mississippian....................... ........ 2.3 - 3.84 avg, to 10.6 max
Pilot Shale ................................... Upper Dev. - Lower Miss. ...... ........
Carbon Ridge Fm .......................... Permian .............................. ........
Webb Fm ..................................... Mississippian....................... ........ to 6.12
Woodruff Fm................................ Devonian............................. ........ 5.7 avg to 13.9 max
Slaven Chert ................................. Devonian............................. ........
Vinini Fm .................................... Ordovician........................... ........ 1 - 25
Carson Sink.................................. Tertiary............................... ........ 0.1 - 3



d. Oil or gas prone Most exploration has been along the faulted valley margins.  These areas 
have produced primarily oil. No drilling has been attempted to evaluate into 
the deepest parts of these Tertiary Basins, which may be gas prone, because

of higher temperatures. The oil prone source rocks (Sheep Pass, Chainman 
Shale) may be buried within the dry gas window. Previously generated oil 
may be cracked into gas, creating possible basin-centered accumulations.

e. Overall basin maturity

f. Age and lithologies In the Railroad and White River Valley areas, the most likely exploration 
targets are the Garrett Ranch Volcanics, which produce at Trap Springs 
Field, and the Sheep Pass Fm. (Paleocene – Eocene) which produces at Eagle

Springs Field. Paleozoic formations which subcrop against the Tertiary 
formations may provide additional reservoirs.

g. Rock extent/quality

h. Potential reservoirs Garrett Ranch Volcanics, Sheep Pass Formation

i. Major traps/seals Traps may be of all types:  structural, stratigraphic, or a combination of both.  
For a basin-centered gas accumulation, the trap/reservoir may cross 
formation boundaries.

j. Petroleum 
generation/migration 
models

The Weimer (1996) “Cooking Pot” model, where generated hydrocarbons 
are expelled into surrounding reservoir rocks.

k. Depth ranges Depth will vary, because hydrocarbon generation depends on both time and 
temperature.  Subsurface temperatures where high will positively influence 
hydrocarbon generation in some areas.  Variability of temperature and source

rock richness will make predicting depth and location difficult.
l. Pressure gradients Eagle Springs Field has a “normal” pressure gradient of 0.4347 psi/ft  (Bortz 

and Murray, 1979, p. 453).

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Eagle Springs and Trap Springs (Figure 45); Grant Canyon, and Blackburn 
Fields.  Only Grant Canyon Field has no production from a Tertiary 
reservoir.

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content Possible, but unknown.

b. Recovery unknown



c. Pipeline infrastructure There are no gas pipelines through the Eastern play area.  A 16-inch natural 
gas pipeline enters Nevada just east of the Oregon border end runs southwest 
through Winnemucca and then along Interstate Highway I-80, through the 

northern part of the Carson Sink Basin to Reno. The pipeline continues 
through Carson City, then exits Nevada into California. An 8-inch trunk line 
runs east to Elko from Winnemucca, and a second 8-inch trunk line runs east 

east from north of Reno, along Highway US 50 to Frenchman.
d. Exploration maturity 

relative to other basins
Although there are presently 12 producing oil fields in Nevada, the state is 
still a high-risk, under-drilled immature exploration area.

e. Sediment consolidation Unknown, but poor consolidation has not been a serious problem in wells 
drilled through the Tertiary section.

f. Porosity/completion 
problems

Unknown, low porosity and fracture production are expected in this play,  
both of which may cause drilling and completion problems.

g. Permeability

h. Porosity
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Figure 43. Stratigraphic columns for White Pine Range and Railroad Valley, eastern Nevada, indicating primary 
source and reservoir units.  After Montgomery (1988b).
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GULF COAST–AUSTIN CHALK

GEOLOGIC SETTING

The Late Cretaceous Austin Chalk of the Gulf Coast was deposited in shallow water on the stable, gently
dipping shelf of the Gulf Basin. The limits of deposition were from the present outcrop belt to the sharp break of the
Cretaceous shelf edge (Figure 46). The Chalk overlies the shales of the Eagle Ford formation and is unconformably
overlain by the Taylor Group (Figure 47)  The dominant lithology is carbonate skeletal debris with some bands of
clay, shale and organic-rich marl. The Chalk becomes increasingly shaley basinward and grades into the shales of the
underlying Eagle Ford. Thickness increases downdip from less than 100 ft near the outcrop to over 650 ft at depths
of 9,500 ft. Thickness also varies along strike reflecting variations in the shelf. In the Maverick Basin (Rio Grande
Embayment), the Chalk exceeds 1,000 ft thickness, thins at comparable depth across the San Marcos Arch, and
thickens again in the East Texas Basin.

Most structure observed in the Chalk reflects an extensional structural style related to opening of the Gulf Basin.
Locally, structure may be complex, influenced by salt flow, anticlinal growth or drape related to differential
compaction in underlying sediments.

HYDROCARBON PRODUCTION

The Austin Chalk has yielded oil and gas in both Texas and Louisiana for over 70 years. Development in Texas
occurs in a 30 mile wide band that stretches from the Rio Grande in south Texas to the Louisiana state line.

Austin Chalk production in Louisiana had been limited to the central part of the state and was incidental to
deeper exploration. The successful application of horizontal drilling at Brookeland field in Sabine County, east
Texas, led to the first successful drilling for the Chalk in western Louisiana. At the same time, operators in existing
fields of Avoyelles Parish began to apply horizontal drilling to exploit Austin Chalk reserves.

The Chalk in Louisiana generally produces from greater depths than in Texas. At Jack Moncrief and North
Bayou fields, the Chalk produces high-GOR oil (oil ranging from 39° to 42.7° API gravity) from depths of about
14,500 ft. Farther west at Masters Creek field, the Chalk produces condensate and gas from 14,800 ft. These depths
yield dry gas at Giddings. This change in hydrocarbon charge may be related to a southeast to northwest shift in
geothermal gradient (Pollastro, U.S. Geological Survey, 1999, personal communication). Work on the geographic
distribution of geothermal gradients in the Chalk remains incomplete, but will add substantially to understanding
hydrocarbon generation beyond the models proposed in the Texas fairway.

The Chalk produces from natural fractures. Consequently, most of the production is associated with known fault
zones or other structural features responsible for fracture development (Stapp, 1977). Locally, high fluid pore
pressure may have contributed to fracturing (Corbett et al., 1987). Gas expansion is the principal driving mechanism
in the reservoirs. Gas to oil ratios generally show an inverse relationship to structural position; that is, gas rich
reservoirs tend to be structurally lower while oil rich reservoirs are shallower. This reflects increased generation of
gas at greater depth (Figure 48)  Reservoirs are directly related to the amount of fracturing; this prevents extensive
migration and most hydrocarbons stay near the depths at which they were generated. Thin bentonite or shale beds
limit vertical fracture growth. Different horizons are productive in different geographical areas. Upper benches of the
Chalk are productive at Pearsall field in the western area; the lowermost Bench is the pay at the Giddings Area.
Farther east at Brookeland field and in Louisiana, the clay/shale interbeds are absent and the Chalk may be fractured
for its entire height. The source for Austin Chalk accumulations may be the underlying Eagle Ford shales or by
carbonaceous beds within the Chalk itself (Stapp, 1977; Grabowski, 1981, 1984; Ewing, 1983; Hinds and Berg,
1990).

Fracture production is characterized by high initial rates of production as open fracture systems are drained.
Production declines are very rapid and are followed by extended periods of low volume production, as microfractures
and/or matrix permeability produce fluid to the open fractures penetrated by the wellbore.
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EVIDENCE FOR BASIN-CENTERED GAS

The discovery of dry (non-associated) gas at the Giddings Deep field in Texas is of particular importance for
exploration for other dry gas accumulations in the Austin Chalk. The Austin Chalk has generally been regarded as an
oil play and certainly the drilling cycles of the 1970s and 1990s were driven by higher oil prices as well as technical
advances. With an abundance of conventional and non-conventional gas plays in Texas, there has been little incentive
for operators to drill the deeper, increasingly shaley Chalk in search of gas reserves, especially since the chalk was
assumed to shale out at depths suitable for gas generation. Gas/oil ratios are relatively constant within most fields
but at Giddings are known to increase about 10 fold across the field. Deep drilling was a deliberate effort to establish
gas reserves. The deeper drilling also identified chalk lithology at greater depths than had previously been expected
(Pollastro, U.S. Geological Survey, 1999, personal communication).

The Austin Chalk apparently can produce commercial gas at Giddings field in Texas. Local drilling at Giddings
has extended the Chalk play downdip past its previously assumed limits. The extension of Chalk exploration into
Louisiana has identified areas of gas and condensate production. Areas including east Texas, and western and southern
Louisiana may be the best area for future gas development. Potential exists for westward extension of the play
downdip of the oil producing trend. The presence of clean chalk beyond its currently assumed limits at the Cretaceous
shelf edge will be a determining factor. Also necessary are fracturing mechanisms to produce reservoirs. The presence
of source beds within the Chalk and the underlying Eagle Ford shale insure gas generation at sufficient depth and
temperature. Salt flow, regional dip change, and faulting associated with flexure of the Cretaceous shelf edge could
all contribute to fracture development.

1) The Austin Chalk and the underlying Eagle Ford shale are sufficiently mature for gas and gas-condensate
generation throughout the known extent of the play. The Chalk appears to be gas-prone at shallower depths
in the western portion of the play in Texas.

2) Clean, brittle chalk suitable for fracturing is present at depths of gas generation in east Texas and eastward
into Louisiana. The downdip limits at which the chalk grades to shale in this area are not yet fully
established.

3) Fractures within the Chalk constitute the reservoir; therefore, reservoirs become limited to areas of
fracturing. In this respect the Austin Chalk differs from a typical continuous gas accumulation. Although
gas may be present in the chalk matrix, fracture permeability is necessary for production. Thus, the extent
of fracturing will restrict formation of gas-producing reservoirs. Salt flow, faulting, differential compaction,
and other structural or stratigraphic events can create fracturing throughout the known extent of the play.
Fracture trends may be identified regionally, but fracturing suitable for reservoir development will be limited
locally.

4) Temperatures in the deep Chalk play reach 350 °F at Giddings field in Texas. The geothermal gradient
apparently changes in Louisiana from northwest to southeast and appears to match the shift from gas-prone
reservoirs to high-GOR oil reservoirs. The nature and extent of this change is not understood. A better
understanding of this phenomenon might help identify gas-prone Austin Chalk in the eastern part of the
play.

5) The only significant water production in the deep Chalk play is at Masters Creek field in Louisiana, where
the Chalk is in fracture communication with the underlying geopressured Eagle Ford Formation.



KEY ACCUMULATION PARAMETERS

Identification West Gulf Coast, Texas and Louisiana, Deep Austin Chalk (Cretaceous)

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Underlying Eagle Ford shale and self-sourced from interbedded organic 
material (Grabowski, 1981, 1984; Stapp, 1977); intraformational fractures 
are the reservoir (Stapp, 1977; Corbett et al., 1987).

b. Total Organic Carbons 
(TOCs)

Eagle Ford = 1.5-8% (Montgomery, 1990a; 1990b); Austin Chalk = 0.3-2.5% 
(Grabowski, 1981)

c. Thermal maturity Thermal alteration index ranges from 1 to 2 at 2000 ft to 3 at 9000 ft.  Ratios 
of Extractable Organic Matter (EOM) to Total Organic Content (TOC) range 
from less than 10% in the immature zone to 45% in the oil 

generation zone.  Ratios decrease with greater depth reflecting the expulsion 
of generated hydrocarbons (Grabowski, 1981, 1984; Ewing, 1983; Hinds and 
Berg, 1990). Temperature gradient changes from south-central Louisiana to

the Louisiana - Texas state line suggest lower temperatures to east and higher 
temperatures to west (Pollastro, 1999, U. S. Geological Survey, personal 
communication).

d. Oil or gas prone Oil and gas productive from south Texas to central Louisiana; non-associated 
gas produced in the deep Giddings area below 10,000 ft.

e. Overall basin maturity Gulf Coast Basin is mature regionally.

f. Age and lithologies Late Cretaceous, coccolith- and foraminifera-rich chalk with thin interbedded 
shales and bentonites.

g. Rock extent/quality Extends from Maverick Basin of south Texas to central Louisiana; rock 
quality varies locally from east to west, but chalk grades to shale basinward 
(Stapp, 1977; Montgomery 1995).

h. Potential reservoirs

i. Major traps/seals Interbedded shale and bentonite beds terminate vertical fracture 
development; fracture development occurs in areas of extensional or 
halokinetic (salt flow) faulting, or structural drape over underlying 
sediments.

j. Petroleum 
generation/migration 
models

Thermogenic generation related to depth of burial (Ewing, 1983; Hinds and 
Berg, 1990; Grabowski, 1981, 1984); limited migration due to fracture 
compartmentalization.

k. Depth ranges Oil and gas productive at depths of 6000 ft to 14,000; dry gas productive at 
10,000 to 14,000+ ft at Giddings field.

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Giddings, Giddings Deep, Pearsall, Masters Creek, Brookeland, Moncrief

b. Cumulative production Giddings (all)--2.8 TCFG, 414,800,000 BO; Pearsall--92 BCFG, 
142,000,000 BO; Masters Creek 17 BCFG, 4,630,000 BO; Moncrief 5.4 
BCFG, 447,000 BO

Economic 
Characteristics:

a. Inert gas content Up to 6.5% CO2 and unspecified amount of H2S at Giddings Deep (Moritis, 
1995).

b. Recovery Highly variable recoveries typical of fractured reservoirs.

c. Pipeline infrastructure Good to excellent for most of play; fair in west-central Louisiana.

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Consolidation/porosity reduction occur with depth of burial.

f. Porosity/completion 
problems

High temperatures (350°) at Giddings Deep, require special mud systems and 
“hostile environment” downhole tools. Plugging of the fracture systems by 
drilling mud is a particular problem in Louisiana. Unlined laterals are more

likely to collapse at the gas prone depths, (>10,000 ft) than in the shallower 
(6000-9000 ft) oil play. The underlying Eagle Ford shales are known to be 
geopressured in portions of Louisiana; fracture communication with the

geopressured zones creates drilling hazards and increases water production.  
Greater weight of overburden may result in more rapid closure of fractures 
with withdrawal of fluid.

g. Permeability

h. Porosity
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GULF COAST-EAGLE FORD FORMATION

GEOLOGIC SETTING

The Eagle Ford Formation was deposited during the late Cretaceous period on the gently sloping shelf of the
Gulf Coast. Figure 49 shows the location of the Eagle Ford gas generation area in south-central Texas and
Louisiana. The formation unconformably overlies the Woodbine Group, which includes the Woodbine sands of east
Texas and southwest Louisiana, the Tuscaloosa sands of central Louisiana, and the Buda limestone of Texas
(Figure 50). Resting unconformably above the Eagle Ford is the Austin Chalk. The lower Eagle Ford is a
transgressive unit composed of dark shales, while the upper unit is a highstand/regressive facies with thin
limestones, shales, siltstones, and bentonites, and thin dolomites locally (Dawson et al., 1993; Stapp, 1977).
Regionally, the formation ranges in thickness from a feather edge in Arkansas to 100-150 ft across much of Texas
and Louisiana. In response to underlying structure, the formation thickens to 300 to 400 ft in south Louisiana.
Maximum thickness is about 800 ft in east Texas. Deposition occurred downdip from the current outcrop band to
beyond the Cretaceous shelf margin. Dark shales in the upper Eagle Ford are absent in parts of east Texas, with the
Austin Chalk overlying fine grained clastics mapped as Woodbine. Montgomery (1995) suggests this “missing”
Eagle Ford may be due to changes in local terminology, but also states that the literature does not formally recognize
this distinction.

Structure in the Eagle Ford generally reflects down to the basin extensional faulting, but locally, salt flow,
anticlinal growth, or differential compaction in the underlying Woodbine/Tuscaloosa may also influence structure .

HYDROCARBON PRODUCTION

Production from the Eagle Ford is difficult to verify. Stapp (1977) noted completions of oil wells in the
formation in Frio County, Texas (presumably in the Pearsall field area), but since these were in conjunction with
Austin and/or Buda completions, there are no separate records of Eagle Ford production. Stapp further stated that the
formation itself could not be considered a primary target because of its thinness and lack of permeability. More
recently, Dawson (1997) found that low matrix permeabilities and low volumetric parameters of the formation
preclude reservoir potential. The ductility of the shale interval hinders development of fractured reservoirs found in
the more brittle overlying Austin Chalk and underlying Buda limestones, although carbonate and siliclastic beds in
the upper interval may fracture.

Values of total organic content (TOC) in the Eagle Ford range from 1.0 to almost 10.0 % wt and thus suggest a
high quality source rock. Formation samples yield total hydrocarbon generation potential (THGP) values from about
1 to over 50 mg HC/g rock. Plots of Hydrogen Index versus Oxygen Index suggest the Eagle Ford contains both
type II and type III kerogens and is prone to both oil and gas generation (Robison, 1997). Maturation studies on
Eagle Ford samples indicate onset of hydrocarbon generation at 7,500 ft original depth (Noble et al., 1997),
matching the variation in maturity from deeper oil-prone Louisiana fields to shallower gas-prone fields in Texas.
This generation depth corresponds to the results of maturation studies in the Austin Chalk (Grabowski, 1984;
Ewing, 1983; Hinds and Berg, 1990 (Figure 51).
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EVIDENCE OF BASIN-CENTERED GAS

The lack of verifiable production history and reported lack of reservoir make the Eagle Ford a poor candidate for
significant gas accumulations. The similarity to maturity in the Austin Chalk allows extrapolation from Austin or
Tuscaloosa gas production to likely areas and depths of gas generation in the Eagle Ford. As a regionally extensive
organic rich source rock, the Eagle Ford could generate gas over a large area downdip from the traditional Austin
Chalk oil trend and in the vicinity of deep dry-gas and gas-condensate production in the Giddings area of Texas and
southwest Louisiana. Production of such gas will require the development of fracture reservoirs in the Chalk or the
underlying Buda formation. The Woodbine sands of eastern Texas grade basinward to shale; the Tuscaloosa sands of
southern Louisiana probably grade likewise. The Tuscaloosa-Eagle Ford transition occurs at depths greater than
18,000 ft, a depth suitable for gas generation. The migration of such gas to conventional reservoirs would require
faulting or fracturing (Montgomery, 1995). A widespread accumulation of gas in tight, silty Tuscaloosa sands in the
transition zone is possible but speculative. Any such accumulation would be within the area of geopressuring in the
Tuscaloosa, which would create drilling and completion problems.



KEY ACCUMULATION PARAMETERS

Identification West Gulf Coast, Texas and Louisiana, Eagle Ford Shale (Cretaceous)

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Eagle Ford shale is self-sourced (Noble et al., 1997; Robison, 1997; Stapp, 
1977); reservoir not developed (Stapp, 1977; Dawson, 1997).

b. Total Organic Carbons 
(TOCs)

Eagle Ford = 1.0 to almost 10% (Robison, 1997).

c. Thermal maturity

d. Oil or gas prone Either oil or gas prone based on kerogen types (Robison, 1997).

e. Overall basin maturity Gulf Coast Basin normally mature regionally.

f. Age and lithologies Late Cretaceous, lower section dominated by dark shales, upper section 
includes thin limestones, dolomites and bentonites in addition to shale 
(Stapp, 1977; Dawson, 1997).

g. Rock extent/quality Regionally extensive shale (see Figure 50); poor reservoir quality.

h. Potential reservoirs

i. Major traps/seals

j. Petroleum 
generation/migration 
models

Thermogenic generation related to depth of burial (Ewing, 1983; Hinds and 
Berg, 1990; Grabowski, 1981, 1984; Noble et al., 1997); migration by faults 
and fractures to Austin Chalk and Buda Limestone, lateral migration to

Woodbine sands (Stapp, 1977; Ewing, 1983; Wescott and Hood, 1993).
k. Depth ranges Oil and gas generative at current depths of 6000 ft to 14,000 ft.

l. Pressure gradients



Production and Drilling 
Characteristics:

Not applicable

a. Important 
fields/reservoirs

b. Cumulative production

Economic 
Characteristics:

Not applicable; source rock only.

a. Inert gas content

b. Recovery

c. Pipeline infrastructure

d. Exploration maturity 
relative to other basins

e. Sediment consolidation

f. Porosity/completion 
problems

g. Permeability

h. Porosity
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GULF COAST-TRAVIS PEAK/COTTON VALLEY FORMATIONS

GEOLOGIC SETTING

The Lower Cretaceous Travis Peak Formation and Upper Jurassic Cotton Valley Group contain FERC-
designated tight gas sands that were widely deposited across eastern Texas, northern Louisiana and into the
Mississippi salt basin (Figure 52). The lower part of the Cotton Valley also contains both reef-forming carbonates
and oolitic shoals. Sandstone distribution in the Cotton Valley generally is more consistent than that in the Travis
Peak.

In east Texas, Travis Peak deposition occurred in a fluvial-deltaic environment that prograded from the northwest
(Bushaw, 1968; Saucier, 1985; and Tye, 1989). Underlying Cotton Valley sands may be barrier-island type deposits.
Interpretations of stratigraphic sequence have defined a number of depositional sub-environments (Figure 53) in east
Texas and western Louisiana that consist of:

1. a braided to meandering fluvial system;

2. interbedded deltaic/fluvial deposits–fluvial deposits distally become encased in deltaic rocks;

3. paralic deposits that interfinger with the above two systems near the top of the Travis Peak; and

4. shelf deposits near the downdip edge of the Travis Peak; these sediments interfinger with and onlap deltaic
and paralic deposits (Dutton et al., 1993).

Thickness of the Travis Peak Formation ranges from 500 to 2,500 ft, and generally increases to the southeast
(Figure 53). The upper 200 ft of the formation holds the most potential for basin-centered gas development. Most
productive intervals occur at depths of 3,100 to 10,900 ft. Cotton Valley low permeability sands range in thickness
from 1,000 to 1,400 ft thick and occur at depths of 5,000 to 11,000 ft; Schenk and Viger (1996) suggest that Cotton
Valley reservoirs may extend to depths as much as 20,000 ft. Reservoir continuity is often interrupted by small-scale
sedimentary disturbances that include bedforms, biogenic features, clay drapes, and scour surfaces (Gas Research
Institute, 1991).

Since 1980, activity targeting the Cotton Valley involves a pinnacle reef play which is developing along the
western shelf of the East Texas basin (Montgomery, 1996) and may extend into the Sabine platform trend into
Louisiana (Figure 52). Reef development appears to coincide with localized salt-tectonic positive features that
provided a shoaling environment. These carbonate buildups were 200 to 400 ft thicker than the surrounding interreef
sediments and had an areal extent of 200 to 800 acres (Montgomery, 1996).

Growth faulting throughout the area of the Cotton Valley and Travis Peak trends may play an important part in
the upward migration of hydrocarbons. Jurassic rocks contain the greatest number of faults, probably related to salt
tectonism (Montgomery, 1996). Salt structure formation provided shoaling environments for deposition of oolites
and other high energy sediments. From the Jurassic to the Tertiary, salt tectonism generated local fracturing that
enhanced reservoir permeability (Coleman and Coleman, 1981; Saucier, 1984).

The East Texas and North Louisiana salt basins may have formed by graben development that resulted from
continental rifting and the opening of the Gulf of Mexico basin (Figure 52). These grabens are bounded by down-to-
the-basin faults, which include the Mexia-Talco and the South Arkansas fault zones (Kehle, 1971; Wood and Walper,
1974; and Finley, 1986). Other dominant structural features in the play area include the Sabine uplift and the Monroe
uplift in northeastern Louisiana. Development of the Sabine uplift is speculative; however, evidence points to a
compressional origin (Jackson and Laubach, 1988).
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HYDROCARBON PRODUCTION

As of 1993, 860 wells were completed within the Travis Peak Formation. Cumulative production from 1970 to
1988 amounted to 508-plus BCFG, with an estimated ultimate recovery of 1,269 BCFG. Average recoveries per well
varied from 1.8 BCFG in east Texas to 1.4 BCFG in north Louisiana. Initial production rates increased from 0 to
765 MCFGPD prior to stimulation to 500 to 1500 MCFGPD after fracturing. Production rates declined  up to 65%
in the first 1 to 2 years. Dutton et al. (1993a, 1993b) estimated the resource base to be 6.4 TCFG.

Cotton Valley wells totaled 2,870 "tight completions" as of 1993. Cumulative production was 2,665.5 BCFG,
with an estimated ultimate recovery of 4,999 BCFG. Average well recoveries varied from 1.8 BCFG in east Texas to
2.4 BCFG in north Louisiana. Production rates increased from 50 MCFGPD prior to stimulation to 500 to 1,500
MCFGPD after fracturing. Decline rates were somewhat less than those of the Travis Peak, with an estimated 46%
decline in the first 1 to 2 years of production. The rate of water production decreased to a 50 barrel per day average in
the same time period. The presence of a gas/water contact in any part of the play remains unknown. R. M. Cluff
(The Discovery Group, 1999, personal communication) believes multiple gas/water contacts exist. Dutton et al.
(1993a, 1993b) estimated the resource base for Cotton Valley tight reservoirs to be 24.2 TCFG.

The early stages of development of the Cotton Valley play included easily identifiable "blanket"-type sands
originating from well-developed strands, barrier islands, and tidal bars. Finley (1986) suggested a newer, tight-gas
sandstone play located generally downdip from the more permeable sands noted above. Distal to proximal delta-front
deposits dominate this hypothetical play, which may extend from northwestern Louisiana into the eastern and central
parts of the East Texas basin.

EVIDENCE FOR BASIN-CENTERED GAS

Widespread production , gas shows, and the occurrence of overpressuring and underpressuring indicate a potential
for basin-centered gas accumulations. Most Travis Peak and Cotton Valley fields are overpressured, but some data
indicates underpressuring in the Cotton Valley interval of the Oak Hill field, and in the Travis Peak lower zone of
the Waskom field; the Cotton Valley limestone at Teague field reaches a pressure gradient of 0.66 psi per ft (Kosters
et al., 1989). Pressure gradients are highest in the underlying Cotton Valley carbonates. Pressure gradients appear
slightly higher in Cotton Valley sandstone reservoirs than in Travis Peak sandstone reservoirs. This may result from
their proximity to source rocks, with some leakage from the Travis Peak. Pressure communication between the
Travis Peak and Cotton Valley reservoirs may exist in east Texas.

In-situ generation of hydrocarbons does not appear likely for Travis Peak reservoirs. Thermal maturity data
indicates that Travis Peak strata are well within the "oil window" (Ro values range from 1.0 to 1.8%); however,
TOC values for interbedded Travis Peak shales generally are less than 0.5% (Dutton et al., 1993a, 1993b).

Cotton Valley strata have a higher likelihood for in-situ hydrocarbon generation. Beneath the Cotton Valley
sands is the Bossier shale (Figure 54). Montgomery (1996) calls the Bossier "a dark, somewhat organic-rich
interval," and local thickness changes of 400 feet occur on the western shelf of the East Texas basin (Forgotson and
Forgotson, 1976; Montgomery, 1996). The Bossier may have generated and expelled hydrocarbons in Late
Cretaceous time (Wescott and Hood, 1991; and Montgomery, 1996). Schenk and Viger (1996) believe some
hydrocarbons in this play may have originated in mudstones in the lower part of the underlying Jurassic Smackover
Formation (Figure 54).



KEY ACCUMULATION PARAMETERS

Identification East Texas Basin and Mississippi-Louisiana Salt Basins Province; Travis 
Peak-Cotton Valley tight sands basin-centered gas accumulation

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Source rocks include:  Bossier shale (Upper Jurassic Cotton Valley group), 
and mudstones and carbonates of the Upper Jurassic Smackover Formation.  
Reservoir rocks include:  Sandstones and carbonates of the Upper Jurassic

Cotton Valley group and Lower Cretaceous Travis Peak Formation.
b. Total Organic Carbons 

(TOCs)
Values for the interbedded Travis Peak shales are less than 0.5%; content of 
the underlying Jurassic Bossier Shale and Smackover shales and carbonates 
is unavailable.

c. Thermal maturity Ro 1.0 – 1.8% (values from Travis Peak interbedded shales). Possibly 
overmature in deepest rocks.

d. Oil or gas prone Both oil and gas prone; however, source rocks referred to are specifically 
noted by Wescott and Hood (1991) to have generated oil.

e. Overall basin maturity Maturation levels are moderate.

f. Age and lithologies Upper Jurassic to Lower Cretaceous sandstones.

g. Rock extent/quality Apparent basin-wide source and reservoir rock distribution; rocks are highly 
variable in reservoir quality because of quartz overgrowths and calcite 
cement, and minor amounts of clay and dolomite.

h. Potential reservoirs Many producing reservoirs.

i. Major traps/seals Carbonates and evaporites of the overlying Sligo and Pettet formations and 
mudstones within the Travis Peak.

j. Petroleum 
generation/migration 
models

Little chance of in-situ generation within the Travis Peak; however, Cotton 
Valley reservoirs may be self-sourced as in Weimer’s (1996) Denver basin 
"cooking pot" model. Migration of gases along fracture and fault systems

from the Upper Jurassic into Travis Peak reservoirs probably occurred, but 
may not be necessary if the Bossier shale generated sufficient hydrocarbons 
to charge both the Cotton Valley sands and Travis Peak sands, provided the

two units are in pressure communication with one another.
k. Depth ranges Travis Peak reservoirs range from 3100 to 10,900 ft; potential reservoir 

depths may exceed 15,000 ft.  Cotton Valley reservoirs range from 5,000 to 
11,000 ft and may go as deep as 20,000 ft.

l. Pressure gradients Travis Peak - 0.38 to 0.52 psi/foot; Cotton Valley sands - 0.32 to 0.55 psi/ft; 
Cotton Valley carbonate (oolitic shoal reservoirs) - 0.50 to 0.66 psi/ft.

Production and Drilling 
Characteristics:



a. Important 
fields/reservoirs

Bethany (Travis Peak), Carthage (Travis Peak, Cotton Valley), Waskom 
(Travis Peak, Cotton Valley), Trawick (Travis Peak), Opelinka (Travis Peak, 
Rosewood (Cotton Valley), Henderson North (Travis Peak, Cotton Valley), 

Blocker (Cotton Valley).
b. Cumulative production Travis Peak - 508.3 BCFG (1970-1988); Cotton Valley - 2,665.5 BCFG 

(1970-1988).

Economic 
Characteristics:

a. Inert gas content

b. Recovery Recoveries vary depending on permeability (degree of cementation and 
fracturing), and porosity.

c. Pipeline infrastructure very good.

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Most rocks are well indurated.

f. Porosity/completion 
problems

Iron oxide precipitates common in some Cotton Valley sandstone reservoirs, 
calcite and silica cementation restrict porosity, minor clay problems.

g. Permeability Travis Peak - 0.0004 to 0.8 md; Cotton Valley - 0.015 to 0.043 md.

h. Porosity Travis Peak - 5-17%; Cotton Valley - 6 to 11%.
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HANNA BASIN

GEOLOGIC SETTING

The Hanna Basin is an intermontane basin in the Rocky Mountain foreland province in southeast Wyoming
(Figure 55). The basin covers about 1,000 square miles and contains almost 38,000 ft of Cretaceous and Tertiary
sediments (Figure 56). At least 18,000 ft of Late Cretaceous and early Tertiary sediments were deposited within 15
million years, creating thermally mature hydrocarbon source rocks in the basin center (Bierei and Surdham, 1986;
Bierei, 1987). The Upper Cretaceous Medicine Bow, Lewis and Mesaverde Formations consist of up to 15,000 ft of
dark marine organic-rich shales (Figure 57). The Eocene-Paleocene Hanna and Ferris Formations include almost
14,000 ft of organically rich lacustrine shales, coals and fluviatile sandstones (Perry, 1992; Bierei, 1987; Matson,
1984a, b). This excessive sedimentation resulted from abrupt basin subsidence associated with Laramide tectonism
(Lillegraven, 1995; Bierei and Surdham, 1986; Shelton, 1968). The basin is asymmetric and is surrounded by
numerous Laramide thrust faults (Figures 55 and 56).

The high subsidence rates that occurred in the Hanna basin are typical of wrench basins with strike-slip faulting
(Perry, 1992).

HYDROCARBON PRODUCTION

The Hanna basin has several fields that produce both oil and gas (Kaplan and Skeen, 1985; Matson, 1984a, b;
Porter, 1979b; McCaslin, 1978). To date, natural gas has been found only in sandstone reservoirs  (Mitchell, 1968).
The nonmarine rocks are currently being explored for coal and coal gas (Perry, 1992). There is no current production
of coal gas in the basin.

EVIDENCE FOR BASIN-CENTERED GAS

Sparse exploratory drilling and lack of data make forecasts  difficult. The Hanna basin has similar rock sequences
to the Greater Green River basin, where Law and others (1984; 1989) have described basin-center gas systems.
Pontolillo and Stanton (1994) measured vitrinite reflectance values greater than 1% below 11,000 ft in the Champlin
and Brinkerhoff wells; these values exceed the 0.8% threshold that generally indicates the top of abnormal pressures
and possible thermogenic gas generation (Johnson and Finn, 1998; Law, 1984) (Figure 58).

Late Cretaceous marine rocks in the basin show total organic carbon (TOC) values greater than 0.5%. The
Hanna, Ferris, Medicine Bow, and Mesaverde Formations have coal beds and carbonaceous shales with variable TOC
values (0.5 to 35.6 wt% avg, 3.2 wt% TOC). Marine sediments of the Lewis, Steele, Niobrara, and Frontier
Formations have TOC range of 0.4 to 4.3 and average of 1.5 wt% TOC (Bierei, 1987).

Most of the known traps are structural closures around the edges of the basin (Matson, 1984a, b). Several
structural/stratigraphic traps are also present (Porter, 1979a; McCaslin, 1978). Stratigraphic traps may occur in the
deeper part of the basin, in low permeability and possibly overpressured Eocene, Paleocene and Upper Cretaceous
rocks (Matson, 1984a, b). Major seals include the black/dark shales of the Cretaceous Mowry, Steele, Thermopolis,
and Mesaverde Formations, and Paleocene and Eocene rocks.

Time-temperature calculations locate the oil generation window at 7,200 to 11,480 ft depth in the basin center.
Apparently, hydrocarbon generation began about 80 Ma at the base of the Late Cretaceous section in the Hanna
basin. Transformation models show that source rocks generated and expelled hydrocarbons very quickly. At present,
the Hanna basin is not generating any significant amounts of hydrocarbons.



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountain Foreland Province; Upper Cretaceous and Paleocene Ferris 
and Hanna Formations

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir At least 5.5 km (18,000 ft) of Late Cretaceous and early Tertiary sediments 
were deposited within 15 m.y., creating thermally mature hydrocarbon 
source rocks in the basin center (Bierei and Surdham, 1986; Bierei, 1987). 
The 
Upper Cretaceous Medicine Bow, Lewis and Mesaverde formations consist 
of up to 4572 m (15,000 ft) of marine dark, organic rich shales. The Eocene-
Paleocene Hanna and Ferris formations consist of up to 4270 m (14,000 ft)

of organically rich lacustrine shales, coals and fluviatile sandstones (Perry, 
1992; Bierei, 1987; Matson, 1984a, b).

b. Total Organic Carbons 
(TOCs)

Moderately good to good late Cretaceous marine source rocks with TOCs 
greater than 0.5%. The Hanna, Ferris, Medicine Bow, and Mesaverde 
formations have coal beds and carbonaceous shales with variable TOC 
values
(0.5 to 35.6 wt% avg, 3.2 wt% TOC). Marine sediments of the Lewis, Steele, 
Niobrara, and Frontier formations have TOC range of 0.4 to 4.3 and average 
of 1.5 wt% TOC (Bierei, 1987).

c. Thermal maturity In the Champlin and Brinkerhoff wells Ro >1% below 11,000 ft; greater than 
0.8% generally indicates the top of abnormal pressures (Johnson and Finn, 
1998; Law, 1984). In #1 Hanna well (Figure 55), Ro < 0.7% to

10,000 ft; below 10,000 ft, Ro increases to 1.23% near bottom of hole, 
suggesting thermogenic gas generation and possible abnormal pressures 
below 10,000 ft (Perry, 1992; Spencer, 1987). Ro for Hanna and Ferris coals

ranges from 0.45% to 0.6% (Pontolillo and Stanton, 1994). Pyrolysis 
profiles, combined with kerogen elemental analysis, also suggest generation 
of gas and possible overpressuring in low permeability rocks within the

deeper part of the basin (Bierei, 1987). Temperature-depth plots, time-
temperature profiles, and the bottom hole temperature in the Forgoston, 
Amoco, and Humble wells ranging from 204 to 240° F all suggest that

overpressuring is present (Johnson and Finn, 1998; Spencer, 1987).

d. Oil or gas prone Prone to both oil and gas. Several fields produce both oil and gas (Kaplan 
and Skeen, 1985; Matson, 1984a, b; Porter, 1979b; McCaslin, 1978). Natural 
gas has been found only in sandstone reservoirs (Mitchell, 1968).

e. Overall basin maturity Kinky vitrinite reflectance present in the basin: interpreted as evidence of 
abnormal pressures in low permeability gas bearing reservoirs (Law, et al., 
1989).

f. Age and lithologies The Upper Cretaceous Medicine Bow, Lewis and Mesaverde formations 
consist of marine dark, organic rich shales. The Eocene-Paleocene Hanna 
and Ferris formations consist of organically rich lacustrine shale, coals and 
fluviatile sandstones.

g. Rock extent/quality Source and reservoir rocks extend throughout the basin.

h. Potential reservoirs Dark, organic-rich marine shales of the Upper Cretaceous Medicine Bow, 
Lewis and Mesaverde formations, and organic-rich lacustrine shale, coals 
and fluviatile sandstones of the Eocene-Paleocene Hanna and Ferris

formations.



i. Major traps/seals Most of the known traps are structural closures around the edges of the basin 
(Matson, 1984a, b). Several structural/stratigraphic traps are also present 
(Porter, 1979a, b; McCaslin, 1978). Stratigraphic traps may be present in the

deeper part of the basin, in low permeability possibly overpressured Eocene, 
Paleocene and Upper Cretaceous rocks (Matson, 1984a, b). Major seals are 
the black/dark shales of the Cretaceous (Mowry, Steele, Thermopolis,

Mesaverde), Eocene and Paleocene.
j. Petroleum 

generation/migration 
models

The oil generation window determined from time-temperatures index 
calculations is at 7216 ft to 11,480 ft in the basin center. Hydrocarbon 
generation began near 80 Ma at the base of the Late Cretaceous section in 

the Hanna basin. Transformation models show that the source rocks 
generated and expelled hydrocarbons very quickly. The Hanna basin is not 
generating any significant amounts of hydrocarbons at present. The zone of

maximum source rock expulsion is modeled at 8200 ft in the center of the 
basin.

k. Depth ranges

l. Pressure gradients In the Hanna #1 well (Figure 55) from 11,000 ft to 17,000 ft: Ro increased to 
1.23 Ro near the bottom of the hole suggesting thermogenic gas generation 
and overpressuring below 10,000 ft (Perry, 1992). The bottom hole

temperature in the Forgoston, Amoco, and Humble wells ranged from 204 to 
240° F, suggesting that overpressuring may be present.

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Rock River (discovered 1918): structural trap/asymmetric anticline. 
Cumulative production past 40 million bbl.  Oil was produced from the 
Cretaceous Muddy, Dakota, Lakota, and Jurassic Sundance Formations.

Allen Lake (discovered 1918): Muddy Clovely, Sundance. Big Medicine 
Bow (Steele, Muddy, Sundance, Tensleep Fms.) Cooper Cove, Diamond 
Ranch (discovered 1980): Steele Fm.

Chapman Draw (discovered 1982): Morrison Fm. oil and gas. Simpson Ridge 
(discovered 1923) Steele Fm. 

b. Cumulative production

Field Name Cumulative Oil
(bbl) (6/98)

Cumulative Gas
(MCF) (6/98)

Rock River ...................... .................... 43,550,000..........................................9,838,602 ..................

Allen Lake....................... ..............................................................................1,768,000 ..................

Big Medicine Bow............. ...................... 8,796,976........................................ 13,712,086 ..................

Chapman Draw................. ............................ 8,095............................................ 816,544 ..................

Simpson Ridge ................. .........................277,074..........................................2,523,981 ..................



Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure Major gas pipelines run west and south of the Hanna basin to transport gas 
from the Greater Green River basin and other gas fields in the Rocky 
Mountain Region.

d. Exploration maturity 
relative to other basins

Mature

e. Sediment consolidation

f. Porosity/completion 
problems

g. Permeability

h. Porosity
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Age Unit Lithology Avg. Thickness Hydrocarbon
Potential

Tertiary
Hanna siltstone, silty sandstone, and 

shale; carbonaceous shale 
underlying coal beds

19,800 ft

6,000 ft

2,100 ft

2,600 ft

3,000 ft

1,200 ft

800 ft

200 ft

63 ft

80 ft

200 ft

375 ft

300 ft

700 ft

400 ft

400 ft

300 ft

500 ft

65 ft

continental silty sandstone, and 
shale; with carbonaceous shale 
and coal; minor conglomerate

dark gray marine shale

upper:  nearshore silty sandstone,
shale, carbonaceous shale, coal
lower:  marine shale, silty 
sandstone

dark gray siltstone, shale; some
limited silty sandstone

chalky shale and non-calcareous
shale; limited siltstone

marine shale and siltstone

black, siliceous shale

sandstone and silty sandstone; 
shale

dark gray shale; bentonite

fine-grained silty sandstone; 
siltstone and shale

silty sandstone, shale; occasional
carbonaceous shale

silty sandstone, shale; and
infrequent oolitic limestone

red siltstone, silty sandstone, and
shale

interbedded red shale, siltstone,
limestone, and gypsum

silty sandstone;  large cross-beds
in places; shale, dolomite, anhydrite

shale, silty sandstone, minor
limestone, siltstone

limestone and dolomite thoughout;
limited shale; siltstone at base

transgressive silty sandstone,
siltstone, and shale

schists, gneisses, and migmatites
of Archean Age; intrusive granites
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Figure 57: Stratigraphic chart of units present in the Hanna Basin, Wyoming, showing hydrocarbon
potential.  After Kaplan and Skeen (1985).
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HORNBROOK BASIN/MODOC PLATEAU

GEOLOGIC SETTING

The Hornbrook Basin is located in the northeast corner of California and south-central Oregon, and is bounded
on the west by the Klamath Mountains (Figure 59). The Cascade Mountains and the central Oregon volcanic
plateaus form the basin’s northern boundary. The basin becomes progressively more block-faulted eastward,
eventually converging with the Basin and Range. The southern boundary stretches across part of the Basin and
Range, the northern end of the Sierra Nevada, the Sacramento Valley, and the Klamath Mountains. The Cascades
overlap part of the basin, dividing the Shasta Valley on the west from the Modoc Plateau to the east.

Potential source and reservoir strata in the basin include the Upper Cretaceous Hornbrook Formation and the
overlying Upper Cretaceous-Eocene Montgomery Creek Formation (Figures 60 and 61). Deposition of the
Hornbrook occurred in a large, relatively undeformed basin called the “Hornbrook Basin.” This basin probably
extended beyond the present limits, and probably connected with the Sacramento/Great Valley basins to the south and
to the Ochoco Basin northeast in central Oregon. Some Hornbrook strata may have continuity with the Great Valley
Sequence. The Hornbrook Formation derives mostly from debris shed from the Klamath Mountains and rests
unconformably on pre-Cretaceous metamorphic and igneous basement (Figure 61). The basal unit is a marine to
marginal-marine conglomerate. The formation includes several fining-upwards marine sequences, and the uppermost
unit is a 2,600 ft-thick marine shale. At the type section, the Hornbrook has a thickness of 4,200 ft (Nilsen, 1984b).

The Montgomery Creek Formation also contains much organic shale and siltstone, although deposition occurred
mostly in a braided stream, non-marine environment (Higinbotham, 1986).

Erskine et al. (1984) measured the integrated potential of the basin and deduced that non-magnetic strata
(principally Hornbrook and lower Montgomery Creek rocks) thicken eastward under the Cascade Range volcanics and
the basalts of the Modoc Plateau (Figure 60). They projected a thickness of 16,000 ft for this sequence of
sedimentary strata. Erskine’s findings suggest the Hornbrook basin formed by uplift of the Klamaths during the
Nevadan orogeny, and that it may be as relatively undeformed beneath the Modoc basalts as is the Upper Cretaceous
Great Valley Sequence to the south. The basin continued to fill without significant tectonic interruption until the
onset of Basin and Range deformation in the middle Miocene. Thereafter, horst-and-graben structures developed in the
eastern Modoc Plateau. Thick plateau basalts covered the basin in the middle Miocene and early Pliocene. Cascade
volcanism affected the west-central part of the original basin from the late Pliocene to the present.

HYDROCARBON PRODUCTION

Most oil, water and geothermal wells drilled to a depth of 500 ft or greater generally have had gas shows. One
operator drilled three wells to 1,200 ft near the north end of Honey Lake and found flow rates of 200 to 450 MCFD,
probably originating from a Pliocene lacustrine sand. The wells never produced commercially. Montgomery (1988a)
noted that the Klamath 1 Kuck well in northeastern Siskiyou County had oil shows from two Upper Cretaceous
sands, but ultimately produced only salt water (Figure 59).
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EVIDENCE FOR BASIN-CENTERED GAS

Several lines of evidence possibly indicate basin-centered gas in the Hornbrook Basin:

1) gas seeps and a non-commercial gas field;

2) source rocks capable of generating gas; and

3) a possible 16,000-ft thick section of “non-magnetic sedimentary rock.”

Total organic carbon (TOC) values for the Hornbrook Formation range from 0.1 to 1.2 wt%, and average 0.52
wt% (Figure 62) (Law et al., 1984). Figure 62 shows that vitrinite reflectance of samples taken along the Interstate 5
corridor ranges from 0.40 to 0.83.

Potential source rocks include coal and coal-bearing shales within the Blue Gulch Mudstone and Dutch Creek
Siltstone members of the Hornbrook Formation (Keighin and Law, 1984), and coal-bearing flood-plain and marsh
mudstones and lacustrine deposits of the upper Cretaceous to Eocene Montgomery Creek Formation (Higinbotham,
1986). Some of these sediments crop out in the Shasta Valley and in other parts of the western basin. The units dip
generally eastward to a depth of 15,000 ft in the central Modoc Plateau. Thus, most of the source rocks probably lie
at depths from 15,000 to 31,000 ft in much of the basin. At these depths the most likely hydrocarbons would be
thermally generated natural gas. Law et al. (1984) noted the kerogen is Type III and would probably produce  gas and
little or no oil.



KEY ACCUMULATION PARAMETERS

Identification Shasta - Yreka Valley and Modoc Plateau,  Northeastern California,  Central 
Southern Oregon. Possible Cretaceous to Upper Tertiary Overpressured Gas 
Play.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Potential Source Rocks:  Slope shales of the Hornbrook Fm. Coal and coal 
bearing shales within the Blue Gulch Mudstone Member, and the Dutch 
Creek Siltstone Member of the Hornbrook Fm (Keighin and Law, 1984).

Coal-bearing flood plain, marsh mudstones and lacustrine deposits within the 
upper Cretaceous to Eocene Montgomery Creek Fm  (Higinbotham, 1986). 
Possible, poorly-known mid-Mesozoic dark brown to black shales

underlying the Klamath Mountains.
b. Total Organic Carbons 

(TOCs)
Late Cretaceous Hornbrook Fm. = 0.1 to 1.2 Wt % organic carbon,  
averaging .52% TOC; these are surface samples that may have been strongly 
oxidized, so TOC may be conservative  (Law et. al. 1984).

c. Thermal maturity Surface samples are generally marginally mature to mature (Law et al., 
1984).

d. Oil or gas prone Gas prone; kerogen is generally Type III; will probably produce gas and little 
or no oil (Law et al., 1984).

e. Overall basin maturity Unknown; deeper parts of basin in the central and eastern Modoc Plateau 
may be mature to overmature. Those areas directly overlain by the Cascade 
Volcanic Range and the Plateau Volcanics surrounding the Medicine Lake 
Caldera to the east may be overmature.

f. Age and lithologies Primary exploration target strata range in age from Late Cretaceous through 
the Miocene.

g. Rock extent/quality

h. Potential reservoirs Potential Reservoir Rocks:  Montgomery Creek Fm, fluvial, Eocene, 
(Higinbotham, 1986). Hornbrook Fm., Late Cretaceous (Nilsen, 1984a; 
1984b). Interbedded mid to late Cenozoic volcanic and lacustrine rocks,

similar to Rattle Snake Hills Gas Field (abandoned), Benton County, 
Washington (Hammer, 1934).

i. Major traps/seals Traps may be of all types (structural and/or stratigraphic).

j. Petroleum 
generation/migration 
models

Weimer (1996) “cooking pot model”

k. Depth ranges Potential reservoir rocks occur from the surface in the Shasta Valley and 
Ashland, Oregon area (Figure 62), to an approximate depth of 9 km. Also in 
the eastern Modoc Plateau, near the transition with the Basin and Range

Province (Fuis and Zucca, 1984; Erskine et al., 1984).



l. Pressure gradients

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

none

b. Cumulative production none

Economic 
Characteristics:

a. Inert gas content Unknown though possible; other basins with a high volcanic and intrusive 
content often contain higher than normal CO2, helium, and other inert 
components.

b. Recovery

c. Pipeline infrastructure P G & E has a 36-in gas transmission line through the area. Additional lines 
are being built or are planned through the area to transport Canadian gas to 
the major central and southern California markets.

d. Exploration maturity 
relative to other basins

Immature, a frontier basin.

e. Sediment consolidation Target formations are very competent.

f. Porosity/completion 
problems

Hornbrook Fm permeability measured from surface samples is low, generally 
less than 1.2 md. However, this is an active tectonic area, and may have well-
developed fracture porosity (Keighin and Law, 1984).

g. Permeability

h. Porosity
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LOS ANGELES BASIN

GEOLOGIC SETTING

The present day Los Angeles Basin is a deep structural depression about 50 miles long and 20 miles wide located
on the west coast of southern California (Figure 63). The Santa Monica and San Gabriel Mountains form the
northern boundary and the Santa Ana Mountains mark the eastern edge. The Pacific Ocean limits the basin on the
west and the south. The basin contains at least 24,000 ft of Late to Middle Miocene and younger marine clastic rocks
overlying older Cenozoic sedimentary rocks and Mesozoic basement rocks (Figure 64). There are four large structural
blocks in Los Angeles basin–the southwestern, northwestern, central, and northeastern–separated by faults or flexures
in the basement rocks (Figure 63). Figure 65 shows the stratigraphic units involved (Yerkes et al., 1965; Beyer,
1996; Brown, 1966). A potential basin center gas accumulation may be present in the central block and within the
northwest-trending Central Syncline (Figure 63).

Sedimentary rocks range in age from latest Cretaceous to Holocene and divide into two groups: a "pre-basinal"
suite of Upper Cretaceous to Lower Miocene rocks, and "basinal" marine sediments deposited in a rapidly subsiding
trough since Middle Miocene time (Yerkes et al., 1965).

The geotectonic history of the Los Angeles Basin follows a constant-motion plate-tectonic model, which links
movements of the San Andreas fault to the Cenozoic sea floor spreading in the northeastern Pacific (Campbell and
Yerkes, 1976).  The basin formed by Middle Miocene to Early Pliocene extension, strike-slip faulting and block
rotation, and Late Pliocene to Recent north-south compression (Beyer, 1996). Extensive igneous flows, intrusive
rocks, and tephra were emplaced within and around the basin during Late Miocene.

HYDROCARBON PRODUCTION

Oil production from the basin has continued since the 1880s. The Los Angeles Basin ranks first world-wide in
total discovered oil-in-place per unit volume. The hydrocarbon richness of the basin results from a favorable sequence
of events including:

1) the deposition of abundant oil-prone organic matter in low oxygen environments,

2) rapid burial which preserved the organic matter,

3) maturation and expulsion of oil coinciding with trap formation, and

4) production of hydrocarbons before uplift and erosion could destroy a significant portion of the reservoirs.

Fifteen of the sixteen largest oil fields, which account for 91% of the basin’s total, were discovered before 1933.
Significant discoveries include the Beverly Hills, La Cienega, Riviera, and San Vicente fields–all found during the
1960s. Urbanization has constrained exploration. Drilling activity during the last 40 years has averaged just two
wells per year. Cumulative production and estimated reserves exceed 9.6 BBO and 8.7 TCFG (Beyer, 1996). All
significant gas reserves in the basin have been associated with oil accumulations (Gardett, 1970). Most of the
discovered accumulations have been in structural/stratigraphic traps in Miocene and Pliocene turbidite sandstones,
ranging from distal turbidite sandstones to proximal conglomeratic sandstones. Several minor reservoirs have been
discovered in Pleistocene, Pliocene and middle Miocene sandstones. Reservoir depths range from 900 to 11,900 ft,
and thicknesses range from 15 to 1,200 ft. Structure has been the dominant trapping mechanism for discovered
hydrocarbons. Traps north and south of the basin center include faulted anticlines, faulted noses, homoclines, domes,
and various stratigraphic traps. To date, the basin center area remains undrilled, except for the American Petrofina
Core Hole well in the basin center (Stark, 1972; Beyer, 1988).
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EVIDENCE FOR BASIN-CENTERED GAS

The American Petrofina Core Hole well bottomed at a depth of 21,215 ft in Delmontian (Upper Miocene to
Middle Pliocene) rocks in the basin center syncline (Beyer, 1996). Unfortunately, the well did not reach the Mohnian
(Upper Miocene) section, which may be the equivalent of the (late Middle Miocene) Modelo Formation’s organic-
rich "nodule shale" found elsewhere in the basin (Bostick et al., 1978). Therefore, drilling has not yet confirmed the
presence of source and reservoir rocks in the basin center. Shallower wells on the east flank of the Newport-
Inglewood zone penetrated interbedded sandstone and shale containing type II kerogen in the lower Mohnian section
(Beyer, 1996); the Mohnian rocks may be fractured because of fluid overpressuring during maturation of kerogen in
the organic-rich shale. The play, if present, will be in the Lower Mohnian section. Favorable conditions for basin
center gas accumulations are present in the Los Angeles basin for the following reasons:

1) Thermally mature source rocks (Ro values > than 1.2% and TOC's of 1-9%) are present in the basin center
(Beyer, 1996);

2) Abnormally high formation pressures were measured both in the American Petrofina Core Hole in the basin
center syncline, and in the Standard Oil of California well (0.72 psi/ft) located northeast of the basin center
(Bostick et al., 1978; Beyer, 1988);

3) High reservoir temperatures ranging from 205 to 304° F were measured in the central basin syncline (8,900
to 15,500 ft);

4) Hydrocarbons are present in the basin center–the American Petrofina Core Hole well yielded 43° API gravity
oil, with a high gas-oil ratio at 21,215 ft depth (Beyer, 1996); and

5) A thick section of Upper Miocene (Mohnian) rocks ranging in thickness from 3,000 to 7,000 ft may be
present in the basin center (Beyer, 1996).



KEY ACCUMULATION PARAMETERS

Identification Pacific Coast- Los Angeles Basin, California. Middle to Late Miocene and 
Early Pliocene age rocks (upper Mohnian, Delmontian and "Repettian" 
stages).

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Southwestern shelf: the organic-rich basal "nodular shale" of late Middle 
Miocene Modelo Formation, sourcing the underlying schist conglomerate 
and the overlying marine sandstone reservoirs (Bostick et al., 1978); 

Central syncline: source rocks may occur at a lower stratigraphic level 
similar to the "nodular shale" (Schmoker and Oscarson, 1995).

b. Total Organic Carbons 
(TOCs)

1.0% - 9.0%

c. Thermal maturity Type II;  Ro = 0.24-0.89% (Bostick et. al., 1978), but greater than 1.2% in the 
American Petrofina Core Hole at 21,215 ft (Beyer, 1996) (hydrocarbon-rich 
shales found in the basin may retard or suppress vitrinite reflectance values).

d. Oil or gas prone Both oil and gas prone.

e. Overall basin maturity Considered mature.

f. Age and lithologies Middle to Late Miocene and Early Pliocene rocks (Upper Mohnian, 
Delmontian and "Repettian" stages). Lithologies are primarily turbidite 
sandstones, siltstones and shales.

g. Rock extent/quality Basin-wide source and reservoir-rock distribution.

h. Potential reservoirs

i. Major traps/seals Structural in producing fields; basin center traps-unknown but postulated as 
(1) deep continuous reservoirs without clear boundaries, (2) localized 
reservoirs where fracturing is a function of lithofacies, (3) reservoirs

structurally bounded by faulting or folding. Basin center seals: shales. Also, 
the presence of laumontite that was reported at depth in the American 
Petrofina Core Hole well may degrade the quality of the reservoir rocks and 

help form seals (Beyer, 1996).
j. Petroleum 

generation/migration 
models

Migration began during early Pliocene or earlier and probably continues 
today. Migration is not necessary for postulated self sourcing reservoirs.

k. Depth ranges 900 to 11,900 ft (producing fields); 21,000 to 24,000 ft in the basin center.

l. Pressure gradients Overpressured aqueous pore fluids of 0.72 psi/ft were reported in the 
Standard Oil of California "Houghton Comm. One" No. 1 well (14,000 ft 
depth), located northeast of the Central Syncline (Bostick et al., 1978).



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Wilmington-Belmont (discovered 1932, >2.857 BBO and 1.235 TCFG); 
Huntington Beach (discovered 1920, >1.138 BBO and 861 TCFG); Long 
Beach (discovered 1921, >945 MMBO and1.088 TCFG); Santa Fe Springs

(discovered 1919, >634 MMBO and 839 BCFG); Brea-Olinda (discovered 
1880, >430 MMBO and 482 BCFG); Inglewood (discovered 1924, >400 
MMBO and 285 BCFG); Beverly Hills (discovered 1966, >135.5 MMBO

and 202 BCFG); Torrance (discovered 1922 >246 MMBO and 158 BCFG); 
Richfield (discovered 1919, 203 MMBO and173 BCFG); and Coyote East 
(discovered 1911, 122 MMBO and 61 BCFG); data taken from 

Beyer (1996).
b. Cumulative production See Important fields/reservoirs above.

Economic 
Characteristics:

a. Inert gas content

b. Recovery good

c. Pipeline infrastructure Very good; there are numerous gas lines in the basin.

d. Exploration maturity 
relative to other basins

mature

e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial.

f. Porosity/completion 
problems

No expected completion problems, based on existing field information.

g. Permeability

h. Porosity
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MESOZOIC RIFT BASINS (EASTERN U.S.)

GEOLOGIC SETTING

The Mesozoic rift basins of eastern North America formed in response to the break-up and separation of Pangaea
in late Paleozoic to early Mesozoic time. Rift basins formed simultaneously on both the North Atlantic and Euro-
African plates (Pyron, 1998). These basins consist of elongate, asymmetric, half-graben structures which contain
thick Triassic through lower Jurassic clastic, evaporite and volcanic rocks. The basin fill rests unconformably on
crystalline basement formed during the Acadian and Alleghenian orogenies. Sedimentary rock types include reddish-
brown mudstones, coarse-grained "border" conglomerates, arkosic sandstones, siltstones, gray-black lacustrine shales,
evaporites, and coal. Tholeiitic basalt flows, sills and dikes are also common. On-shore rift basins, both exposed (in
the Piedmont and Blue Ridge Provinces) and inferred (in the Coastal Plain), extend from Georgia to Massachusetts
and cover about 42,700 square miles (Figure 66). Individual basins range from 24 square miles (Taylorsville basin)
to over 3,100 square miles (Newark basin) in area. Offshore basins extend from Nova Scotia to the Florida Panhandle
(Figure 67). The rift basins generally trend northeast, approximately perpendicular to the initial rifting of North
America and Africa (Klitgord and Behrendt, 1977).

The tectonic history of the basins includes 5 stages:

1) Permian through Triassic:  crustal thinning along the eastern margin of the North American continent. This
is the earliest stage of Pangaea breakup.

2) Middle Triassic:  rifting and crustal extension. Late Triassic clastic deposition into subsiding basins.

3) Early Jurassic: extension and clastic deposition in basins along tholeiitic basalt flows and intrusions.

4) Middle Jurassic:  sea-floor spreading and development of the Mid-Atlantic ridge system.

5) Late Jurassic to present: lithospheric cooling, plate subsidence, and marine transgression with development
of a passive continental margin (Schultz, 1988).

The depositional history of a typical onshore Mesozoic rift basin of eastern North America includes four phases:

1) Formation of a rift graben along a listric boundary fault. Alluvial fans form along the upthrown walls and
coalesce into laterally extensive deposits of fanglomerate, and finer-grained sediments near the basin center.
Conglomerates interfinger with sandstones and siltstones. Internal basin drainage produces intermittent
playas with evaporite deposits.

2) Tectonic subsidence of the basin ends. Alluvial fans become reworked; coarse to fine sediments enter from
outside the rift structure. Internal drainage results in the formation of a lake in the basin center. Vegetation
flourishes along the lake margins and provides organic material for sedimentation. Feeder streams deposit
coarse sands and fanglomerates interfingered with lacustrine sediments.

3) Fluvial and lacustrine sands become reworked and re-deposited parallel to the long axis of the basin. Diabase
dikes, sills and sheets intrude along zones of weakness. The magma causes regional heating of the basin and
consequent thermal maturation of organic sediments.

4) Recent uplifting, tilting, and regional erosion created the present day geology. In many offshore basins,
evaporite deposition followed continental deposition. During Cretaceous and Tertiary time, marine
sediments covered the continental rocks (Pyron, 1998).
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HYDROCARBON PRODUCTION

There is no hydrocarbon production from any Mesozoic rift basin in the eastern U.S. Seventy years of
exploratory drilling in the rift system has yielded numerous shows of oil and gas but no commercial hydrocarbons.

EVIDENCE FOR BASIN-CENTERED GAS

Other Mesozoic rift basins are productive, including the Ghadames basin in Algeria (Northeast Africa), the Cuyo
basin in Argentina (South America), the North Sea (Europe), and the Jeanne d'Arc basin (Canada). Rift basins offer
attractive exploration targets because the cycle of rifting, sedimentary fill and igneous activity provides reservoirs,
source rocks and thermal maturity.

Significant potential exists for basin-centered gas accumulations within thick lacustrine mudstones, black
shales, siltstones, and sandstones in the deep parts of the eastern U.S. rift basins. Geochemical data, including total
organic carbon (TOC), thermal alteration index (TAI), vitrinite reflectance (Ro), and Tmax measurements, indicate the
basins are thermally mature.

The Newark basin in central New Jersey and southeastern Pennsylvania may contain significant gas reserves.
Figure 67 includes maps depicting the geology and structure of this basin; Figure 68 shows basin stratigraphy in
three locations. The Newark forms a part of a larger rift system that also incorporates the Gettysburg and Culpeper
basins and extends from New Jersey southwest to Virginia. The exposed sedimentary section along this system is
over 25,000 ft thick and appears gas prone. The Newark has had only three exploratory wells drilled. One well
reached a depth of 10,500 ft and encountered gas shows within a 3,000-ft section of fractured lacustrine shale.

The Danville basin (Virginia-North Carolina) is also gas prone with a 9840 ft thick sedimentary section. The
Hartford basin appears to be oil prone (Hubert et al., 1992; Schultz, 1988; Kotra et al., 1988).

Exploration may identify productive basins where suitable reservoir rocks occur. Basins with thin sedimentary
sections, such as the Richmond and Taylorsville, would be less attractive exploration targets.



KEY ACCUMULATION PARAMETERS

Identification Eastern U.S. onshore Mesozoic basins; upper Triassic through lower Jurassic 
continental clastic and carbonate rocks.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Late Triassic early Jurassic thick sequences of organic black and gray shales 
and black siltstones deposited along the centers of the basins.

b. Total Organic Carbons 
(TOCs)

Newark: 0.5-6.0% (lacustrine black shales); Hartford: 0.4-3.5% (lacustrine 
black shales); Culpeper: 0.4-8.0% (lacustrine black shales); Danville: 0.1-
2.4% (black shale/coal); Deep River:  up to 35% (black shale/coal); 

Richmond: up to 40% (black shale/coal) (Schultz, 1988; Pratt and Burruss, 
1988).

c. Thermal maturity Kerogen Type: Hartford and Richmond basins: lacustrine algae (Type 1) and 
mixed lacustrine algae/terrestrial plant debris (Type 2); Newark, Culpeper 
and Dan River basins: mixed (Type 2) (Kotra et al., 1988; Schultz, 1988).

Thermal alteration index (TAI): Newark (3+) and Danville basins (4.0); 
Hartford, Deep River and Richmond basins (2.5-to 3.0); Vitrinite reflectance 
(Ro): Hartford basin 0.5-1.0; Danville basin 2.15. Tmax (°C): Newark

basin 426-443; Danville basin 400+; Hartford, Deep River, Richmond, 
Taylorsville basins 441-455 (Kotra et al., 1988; Pratt et al., 1988).

d. Oil or gas prone Both oil and gas prone: Newark and Danville basins-gas prone. Hartford, 
Deep River, Richmond basins-oil prone.

e. Overall basin maturity Highly variable. Extensive igneous activity and high heat flow cooked many 
of the lacustrine shales and coals in the southern basins.

f. Age and lithologies Upper Triassic through lower Jurassic.

g. Rock extent/quality Basin-wide source and reservoir-rock distribution.

h. Potential reservoirs Hartford: migrated bitumen on sandstone outcrops and in fractures; no 
drilling; Texaco seismic surveys in late 1985. Newark: migrated bitumen on 
sandstone outcrops and in fractures; North Central 1 KCI Cabot 1985

test to 10,500 ft reported gas shows in 3000 ft thick organic shale section. 
Gettysburg: 4 dry holes; one well reached 7000 ft to Lower Cambrian 
clastic rocks (1960s). Culpeper: 2 wells, 2.5 bbl oil recovered in tests;

bitumen on outcrops (1914, 1916). Richmond: about 15 holes from 1970-
1988, both deep and shallow; oil and gas shows; some oil recovered. 
Taylorsville: about 6 holes in the 1980s; rumored to have oil and gas

shows. Dan River: about 3 tests in the 1970s-1980s; oil and gas shows with 
some oil recovered; oil in black shales. Farmville: one hole with oil and gas 
shows. (Schultz,1988; Pyron, 1988)

i. Major traps/seals Interbedded shales, siltstones and sandstones of alluvial fans and lacustrine 
sediments.



j. Petroleum 
generation/migration 
models

Oil and gas shows and bitumen in fractures are evidence of hydrocarbon 
generation and migration in these basins.

k. Depth ranges 10,000-20,000 ft

l. Pressure gradients

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Potential reservoirs/fields unknown in these basins:  Newark, Culpeper, 
Richmond, Taylorsville, Dan River, Farmville.

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure very good

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial.

f. Porosity/completion 
problems

g. Permeability

h. Porosity
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(1981), Turner-Peterson and Smoot (1985), Pratt et al. (1988), and Schultz (1988).



Figure 68. Stratigraphic columns for the Newark basin in Pennsylvania, NewJersey, and New York.  After Smoot et al. (1988).
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MICHIGAN BASIN (ST. PETER SANDSTONE)

GEOLOGIC SETTING

The Michigan Basin is a circular-shaped intracratonic basin covering about 80,000 square miles (Catacosinos and
Daniels, 1991). Structural boundaries of the basin include the Canadian Shield on the north, the Algonquin Arch on
the east, the Findlay Arch on the south and east, and the Kankakee and Wisconsin Arches on the south and west
(Figure 69). The basin contains Paleozoic marine sediments overlying Precambrian basement (Figures 69 and 70).

The Middle Ordovician St. Peter Sandstone consists of massive sandstones interbedded with thinner dolomites
(Figure 70). Deposition of this transgressive marine succession occurred in peritidal to storm-dominated outer-shelf
environments (Catacosinos and Daniels, 1991). In the center of the Michigan Basin, the St. Peter conforms to and
interfingers with the Trempeleau and Prairie du Chien Formations; however, at the basin margins, the sandstone lies
unconformably over underlying units (Figure 70). Similarly, at the basin center the St. Peter grades to the overlying
Glenwood Formation, but rests unconformably over underlying units at the basin margins. The St. Peter thickens to
almost 1,100 ft in the basin center (Figure 71).

The quartzose sandstones of the St. Peter are fine- to medium-grained and cemented with silica and dolomite.
Diagenesis has generally reduced porosities to less than 3%, but locally they may reach 10 to 15%. Porosity
reduction occurred early in the burial history of the St. Peter (Drzewiecki et al., 1994). The formation contains
several repetitive sequences that reflect the transgressive and highstand cycles resulting from major subsidence and
structural movement within the basin. The sequences appear as wireline log signatures and corresponding lithologies
(Figure 72) (Dott and Nadon, 1992). The repetition of sandstone, claystone, and dolomite has not only influenced the
diagenetic banding of the sandstone reservoirs, but also has compartmentalized the reservoir pressures.

Sandstone permeability ranges from 1.0 to >100 md (Figure 73) (Bahr et al., 1994).

HYDROCARBON PRODUCTION

The St. Peter has historically had some exploration, but well penetration and testing occurred only in the
usually tight upper part. Over 36 gas fields have been discovered in the Glenwood-St. Peter “Deep Play” since the
late 1980s (Barnes et al., 1992). Production depths vary from about 5,000 to 11,500 ft. Falmouth field produced 5.1
BCF from 1987 to 1990, and some estimates place the per-well reserves at 2.0 to 14 BCF per 640 acre spacing.

Tests within the St. Peter Sandstone indicate overpressure exceeds 300 psi (Figure 73). Dott and Nadon (1992)
believe overpressuring in the formation resulted from hydraulic head created during Wisconsinan glaciation. Bahr et
al. (1994) compared brine heads in the basin to ground surface elevations and found a large area of overpressures
occurring within the St. Peter and Glenwood formations west and north of Saginaw Bay. Figure 71 shows the
mapped area of overpressure in the St. Peter. Bahr’s results showed an apparent association of vertical variations in
overpressures with vertical variations in permeabilities, which possibly indicates a stacked system of smaller
compartments within a larger compartment. Figure 72 illustrates the repetitive depositional sequences within the St.
Peter that could represent the smaller pressure compartments within the reservoir’s megacompartment.

Most traps are structural, and consist of several-mile long anticlines having closures of 20 to 80 ft west of a
Precambrian rift and 100 to 200 ft east of the rift (Figure 71). Stratigraphic traps potentially exist, and fracture
systems may also be present.

Organic-rich shales in the Ordovician Foster Formation probably source the St. Peter Sandstone.
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EVIDENCE FOR BASIN-CENTERED GAS

Vitrinite reflectance data suggests the Michigan Basin Ordovician section is thermally mature (Cercone and
Pollack, 1991); the authors noted that the present-day geothermal gradient and overburden depth could not account for
the maturation and concluded that a steeper gradient with an overburden composed of fluvial-deltaic sediments would
create a tighter seal to cook the organic material.

Although structure controls most gas production from the St. Peter, mapping the internal depositional and
diagenetic sequences could identify stratigraphically controlled reserves (Dott and Nadon, 1992; Winter et al., 1995).
If a seal exists, the erosional limit of the St. Peter Sandstone may hold a regional stratigraphic pinch-out play.



KEY ACCUMULATION PARAMETERS

Identification Michigan Basin, Ordovician, St. Peter Sandstone, overpressured.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir The St. Peter Sandstone is probably sourced from organic-rich shales in the 
Ordovician Foster Fm. Production associated with anticlinal structures 
suggests the presence of fracture systems. Overpressuring is the result of the

hydraulic head created during the last glacial event.
b. Total Organic Carbons 

(TOCs)

c. Thermal maturity Vitrinite reflectance values vary from .50 to 1.5 for the Ordovician (Cercone 
and Pollack, 1991).

d. Oil or gas prone Gas prone.

e. Overall basin maturity

f. Age and lithologies Middle Ordovician sandstones, dolomites, and shales.

g. Rock extent/quality Basin-wide source and reservoir-rock distribution. Currently 36 fields 
produce from the Glenwood-St. Peter "deep play" (Barnes et al, 1992).

h. Potential reservoirs

i. Major traps/seals Most production occurs in anticlinal features with 20 ft to 200 ft closures 
associated with structural deformation occurring along the Midcontinent Rift 
System. Potential exists for stratigraphic traps as well.

j. Petroleum 
generation/migration 
models

k. Depth ranges 1.5 km to 3.5 km (≈ 0.9 to 2.2 mi).

l. Pressure gradients Pressures reported to be 300 psi in excess of expected formation pressures.

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Falmouth field plus 35 other fields produce from the St. Peter Sandstone.



b. Cumulative production Falmouth field has produced in excess of 5.1 bcf from 1987 to 1990.

Economic 
Characteristics:

a. Inert gas content None

b. Recovery Good to moderate.

c. Pipeline infrastructure Good

d. Exploration maturity 
relative to other basins

Mature basin based on later Paleozoic exploration and production.

e. Sediment consolidation Good to moderate consolidation.

f. Porosity/completion 
problems

Low porosities and variable permeabilities may require stimulation of the 
reservoir.

g. Permeability 0.01 to 100 md

h. Porosity 3 to 10%
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MID-CONTINENT RIFT

GEOLOGIC SETTING

The Mid-Continent Rift is a 57,000 square mile horst and graben system located in the north-central U.S. It
follows an 800-mile long north-northeasterly trend from south-central Kansas to northeastern Minnesota,
northwestern Wisconsin, the western part of the Upper Peninsula of Michigan, and into central Michigan
(Figure 74) (Palacas, 1995). Precambrian (Keweenawan) in age, this feature represents a failed continental rift
characterized by broad horst blocks composed of layered basalts and flanked by high-angle normal faults that form the
boundaries of adjacent sediment-filled half-grabens (Palacas, 1995). Development of the rift occurred approximately
1.1 billion years before present (Dickas, 1986). Dickas (1986) mapped the rift extent by recognizing significant
gravity and magnetic anomalies throughout the trend. Newell et al. (1993) noted rejuvenation of some structural
features by steeply dipping reverse faults, where the central horst has thrust over the basin margin.

Stratigraphy appears generally similar along the rift complex, based on outcrop descriptions and logs for wells
that have penetrated rift sediments (Figure 75). Sedimentary rocks in the Mid-Continent rift include arkosic and
feldspathic sandstones, conglomerates, siltstones, and micaceous red, green and gray shales deposited in marine
(Scott, 1966), alluvial plain (Dickas, 1986), and alluvial fan and lacustrine environments (Daniels, 1982; White and
Wright, 1960; Tryhorn and Ojakangas, 1972; Kalliokoski, 1982; Catacosinos, 1973; and Fowler and Kuenzi, 1978).
Layered basalts are common within the rift and compose a central horst block.

The Defiance basin in Iowa is one of the deepest in the rift system. Geophysical modeling indicates 32,800 ft of
sediments (Anderson and Black, 1982). An exploratory well drilled in Iowa penetrated 1,355 ft of Keweenawan
clastics, 55% of which were red-brown shales (Dickas, 1986). Two other exploratory wells penetrated significant
thicknesses of Mid-Continent rift strata (Figure 74):  the Texaco No. 1 Poersch (11,301 ft total depth/8,455 ft of rift
strata penetrated) in northeastern Kansas; and the Amoco No. 1 Eischeid (17,851 ft total depth/14,898 ft of rift strata
penetrated) in west-central Iowa (Newell et al., 1993). Five wells have penetrated the Precambrian Nonesuch Shale
and equivalents within the rift.

Major traps or seals include interbedded shales, siltstones, layered basalts, and fault gouge within the Nonesuch
Formation, and tight horizons in the overlying Freda Sandstone and Bayfield Group (Figure 75).

HYDROCARBON PRODUCTION

There is no significant hydrocarbon production within the rift. In 1933, operators produced small amounts of oil
from fractured Precambrian quartzites in central Kansas, at the southern end of the rift trend. Paleozoic source rocks
probably expelled this oil, which then migrated laterally into the Precambrian rocks along structural highs (Walters,
1953).
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EVIDENCE FOR BASIN-CENTERED GAS

The Texaco No. 1-31 Poersch encountered several shows of oil and gas during drilling and testing (Paul et al.,
1985). Total organic carbon (TOC) values from the Amoco No. 1 Eischeid in Iowa ranged up to 1.4%, but the
section is overmature (average Tmax = 503° C). In southeastern Minnesota, the Lonsdale No. 65-1 well encountered
dark gray mudstone of the Solor Church (Nonesuch) Formation, and TOC values varied from 0.13% to 1.77%
(Palacas, 1995); the average Tmax was 494° C (Hatch and Morey, 1984; 1985). In 1929, a cable-tool rig drilled 822
ft of Precambrian carbonaceous shales and sandstones and had some oil and gas shows (Newell et al., 1988). This
well was 21 miles northeast of the Texaco No. 1 Poersch well.

The Precambrian Nonesuch Fm and equivalents evidently have hydrocarbon generative potential throughout the
rift system. The interval contains 250 to 700 ft of interbedded, laminated, dark gray to black siltstone, silty shale and
sandstone. The silty shale contains TOC values averaging 0.6% and reaching a maximum of 3% (Imbus et al., 1990;
Pratt et al., 1991). The greatest TOC values in the Nonesuch and equivalents occur near the middle of the unit and
toward the eastern end of the rift system in northern Michigan.

Palacas (1995) reported that the Nonesuch generated oil and gas from type I and type II kerogens in the deeper
parts of several of the rift basins. Thermal maturity was sufficient to crack oils into gaseous hydrocarbons in the
Iowa and Minnesota segments of the rift. He concluded that two phases of hydrocarbon generation occurred, one
during the early phase of rift extension, and the second during a compressional phase after the deposition of Paleozoic
sediments. Remigration of hydrocarbons probably occurred during the second stage.

Newell et al. (1993) measured a present day geothermal gradient of 15.6 °F per 1,000 ft in the 1-4 Finn well in
northeastern Kansas (Figure 76); the bottom-hole temperature at 3,974 ft was 116 °F. Thus, bottom-hole
temperatures in deeply buried rift sediments should have sufficed for hydrocarbon generation. No pressure data is
known to exist for wells drilled into the Nonesuch or equivalent rocks (K.D. Newell, Kansas Geological Survey,
1999, personal communication).



KEY ACCUMULATION PARAMETERS

Identification Superior Province, Mid-Continent rift, potential basin-centered gas play.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Oronto Group (Wisconsin), Nonesuch Formation (Michigan and Wisconsin), 
Solor Church Formation (Minnesota), Lower Red Clastics (Iowa), Red 
Clastics (Nebraska), and Rice formation (Kansas).

b. Total Organic Carbons 
(TOCs)

Range from 0 to 3%

c. Thermal maturity Tmax 423 – 503° C

d. Oil or gas prone Oil prone; mostly type I and II kerogen.

e. Overall basin maturity Maturation levels are moderate to high. Highest thermal maturity is in Iowa 
and Minnesota and with depth and proximity to central horst. Ro ranges from 
0.5 to 1.43 %.

f. Age and lithologies Precambrian (Keweenawan) age, Nonesuch (and equivalent) arkosic sands, 
silts and silty shales

g. Rock extent/quality Wide source and reservoir rock distribution. Reservoir quality is unknown 
because of few outcrops and few wells drilled.  Expected reservoir quality 
varies depending on clay content, interbedded shales and silts and the degree

of fracturing.
h. Potential reservoirs No production. Precambrian Nonesuch and equivalents.

i. Major traps/seals Interbedded shales, siltstones, layered basalts and fault gouge within the 
Nonesuch formation, tight horizons have also been identified in the overlying 
Freda sandstone and in the Bayfield group.

j. Petroleum 
generation/migration 
models

In-situ generation and short distance migration. Hydrocarbon generation may 
be ongoing in deeper basins. Present day geothermal gradient is 15.6° F per 
1000 ft.  The Bakken shale model of Meissner (1978) may apply in

the rift for hydrocarbon generation and explulsion directly into adjacent beds.

k. Depth ranges Accumulation depths are thought to range from 3000 ft to 25,000 ft.

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Entire rift trend virtually untested; no production to date.

b. Cumulative production None

Economic 
Characteristics:

a. Inert gas content Unknown
b. Recovery Recoveries would vary depending on permeability, porosity and depth; 

diagenetic alteration may increase with depth.

c. Pipeline infrastructure Poor

d. Exploration maturity 
relative to other basins

Immature

e. Sediment consolidation Most rocks are well indurated.

f. Porosity/completion 
problems

Silty shales, clay, and arcosic/feldspathic sands have high alteration 
potential; also may have swelling clays and will produce migrating fines 
problems. Silty shales and siltstones are interbedded with sands.

g. Permeability

h. Porosity Average porosities range from 4% to 18%.
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PARADOX BASIN (CANE CREEK INTERVAL)

GEOLOGIC SETTING

The Paradox Basin extends across southeastern Utah and southwestern Colorado along a roughly northwest-
southeast trend. Several structures form its boundaries and contributed sediments: the ancestral Uncompahgre Uplift
to the northeast, the Monument Uplift to the southwest, and the Emery Uplift to the northwest (Figure 77) (Baars
and Stevenson, 1981). Figure 78 shows a partial stratigraphy of the basin.

During the Pennsylvanian (Desmoinesian) period, the basin accumulated deposits of algal carbonates and
evaporites (halite, gypsum, and potash) which interfingered with clastic deposits shed from surrounding higher
regions (mostly the ancestral Uncompahgre Uplift; the present Uncompahgre Plateau formed during the early Tertiary
Laramide orogeny). Toward the basin depocenter, evaporite deposits interfinger with siltstones, organic-rich
dolomites and black shales. Deposition of Uncompahgre alluvium deformed the underlying salts, which created
northwest- to southeast-trending anticlines parallel to basement faults (Figure 79) (Hite and Buckner, 1981).

The Cane Creek interval is the 22nd of 29 carbonate cycles identified within the Paradox Member of the
Hermosa Formation (Figures 78 and 80) (Hite et al., 1984). Three units make up the Cane Creek interval: the
uppermost "A" unit of interbedded red siltstone and anhydrite; the "B" unit of black, organic-rich shales and
dolomites; and the lowermost "C" unit of interbedded red siltstone and anhydrite. The "B" unit represents the source
and reservoir rock and varies in thickness from less than 10 ft to almost 30 ft. Combined, the three clastic units are
almost 150 ft thick near the basin depocenter, but pinch out against the ancestral Uncompahgre flank (Morgan,
1992). The interval thins in synclines and thickens on anticlines; this occurrence may result from (1) original
deposition associated with fault movement, (2) structural thickening from small-scale folding and faulting (i.e.,
repeat sections), and/or (3) flowage within anhydrite layers (Montgomery, 1992).

HYDROCARBON PRODUCTION:

Most production in the Paradox originates from Ismay and Desert Creek carbonates in the southern part of the
basin. Some structures in the Mississippian Redwall and Leadville limestones also produce hydrocarbons. To date,
Cane Creek production has occurred only in the northern part of the basin, and mostly from fractures and fracture
intersections on the flanks of anticlines that parallel the ancestral Uncompahgre Uplift. The nature of the fracturing
makes production very sensitive to drilling mud weights and completion techniques (Montgomery, 1992). As a
result, recoveries vary greatly.

Cane Creek wells show significant reservoir overpressuring, at least 6,000 to 6,500 psi at depths of 7,200 to
7,500 ft. The overpressuring may result from salt flowage (Montgomery, 1992). Oil is typically sweet, having API
gravities from 43 to 46. Gas associated with oil production is usually flared, because of the lack of pipelines in the
area. The gas is sweet, containing between 1 and 2% nitrogen and/or carbon dioxide.

The # 1 Long Canyon well (9-26S-20E) drilled by Southern Natural Gas has yielded over 1 MBO since 1962. In
1991, Columbia Gas completed Kane Spring Federal No. 27-1 (27-15S-19E) in the Cane Creek interval using
horizontal drilling; cumulative production to 1992 exceeded 100,000 bbls of oil.
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EVIDENCE FOR BASIN CENTERED-GAS

The Cane Creek interval is rich in organic content and thermally mature. Data from the Gibson Dome well
(Figures 79 and 80) shows total organic carbon (TOC) content in the interval to be 3.96 wt%; vitrinite reflectance
(Ro) averaged 0.54, and Tmax reached 438° C (Hite et al., 1984). This data indicates the Cane Creek is self-sourced
(C.W. Spencer, U.S. Geological Survey, 2000, personal communication). The reservoir/source may communicate
with other organic-rich reservoir/ source rocks.

Traps within the Cane Creek interval appear to be small tightly folded salt structures; stratigraphic traps are
possible. If the salt layers formed impermeable seals, significant overpressures would occur.

Temperatures in Columbia Gas wells in the Kane Spring and Shafer Canyon areas range from 114 to 132° C and
probably indicate too low a reservoir temperature  exists for a basin center accumulation to occur (M.S. Wilson,
2000, consulting geologist, written communication). However, at greater depth, reservoir temperatures  and thermal
maturity would probably be higher, and consequently, a basin center gas accumulation may be present in the deeper
parts of the Paradox Basin.



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountain, Paradox Basin, Pennsylvanian, Hermosa Formation, 
Paradox Member, Cane Creek interval, overpressured.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir The Cane Creek interval is self-sourcing, and current production indicates 
fracturing of the reservoir is required to produce economic quantities of oil 
and gas. Overpressuring largely occurs from salt deformation which may

result from salt flowage in conjunction with reactivated basement structures.
b. Total Organic Carbons 

(TOCs)
Cane Creek interval in the Gibson Dome #1 core hole = 3.96 wt%.

c. Thermal maturity Cane Creek interval in the Gibson Dome #1 core hole Ro = 0.54; Tmax = 
438° C.

d. Oil or gas prone Both oil and gas prone.

e. Overall basin maturity The southern portion of the basin is immature.

f. Age and lithologies Pennsylvanian black shales and dolomites.

g. Rock extent/quality Source and reservoir rocks are distributed throughout the basin (although 
substantially less than the halite deposition limit typically used to define the 
limits of the Paradox Basin). About 486 wells (basin-wide) may have

penetrated this interval.
h. Potential reservoirs Cane Creek interval is sporadically productive and other organic-rich 

intervals, such as the Chimney Rock and Gothic intervals (Figure 78) along 
with many other unnamed units may deserve closer attention.

i. Major traps/seals May be discrete tightly folded salt structures associated with basement fault 
blocks. Possible stratigraphic traps may result from lateral facies changes to 
continentally derived red-beds.

j. Petroleum 
generation/migration 
models

k. Depth ranges 2000 ft; on some structures to 7500 ft

l. Pressure gradients Average formation pressure is highly pressured (approximately 0.85 psi/ft) 
(Montgomery, 1992).



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Bartlett Flat, Cane Creek,  Gold Bar, Long Canyon, Shafer Canyon, Wilson 
Canyon.

b. Cumulative production The Long Canyon well has produced in excess of 1 MMBO since 1962, and 
the Kane Creek Federal #27-1 has produced in excess of 100 MBO as of 
1992 (Montgomery, 1992).

Economic 
Characteristics:

a. Inert gas content No; from 1.0 % to 3.0 %.

b. Recovery Highly variable

c. Pipeline infrastructure Poor

d. Exploration maturity 
relative to other basins

e. Sediment consolidation The producing interval is well indurated due to depth of burial.

f. Porosity/completion 
problems

The reservoir/source rock is fractured and overpressured; as a consequence, 
heavy weight drilling muds are often used, which may result in formation 
damage and difficult and costly completions. Production of hypersaline

formation waters has often caused plugging of production tubing and 
equipment which may in turn give erroneous flow rates and production 
declines.

g. Permeability Highly variable, fracture permeability.

h. Porosity
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Figure 80. Diagrammatic north-south cross section A-A' showing Pennsylvanian rocks and carbonate cycles in three U. S. Department of Energy (DOE) 
core holes (SD-1, GD-1, and ER-1). Only the GD-1 core hole penetrated the Cane Creek interval. Figure 79 shows location of the cross section.
After Hite et al (1984).
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PARK BASINS OF COLORADO

GEOLOGIC SETTING

The Park Basins are located 50 miles west of Denver, in central Colorado. Four mountain regions define the
basin limits: the Front Range to the east; Medicine Bow Mountains to the north; Park, Gore, and Mosquito Ranges
on the west; and the Thirty-nine Mile Volcanic Range to the south (Figure 81). Structural or stratigraphic differences
separate the Park Basin into three intermontane basins–North, Middle, and South Park. Tertiary volcanics of the
Rabbit Ears Range physically divide the otherwise structurally similar North and Middle Parks. Thirty miles to the
south lies South Park Basin, which has undergone a more complex structural and stratigraphic history. Precambrian
rocks and Tertiary intrusives of the Williams Fork and Vasquez Mountains isolate this basin from North and Middle
Parks.

The 50-by 180-mile Park Basin complex is predominantly a north-south trending, asymmetrical syncline. The
complex was an uplifted feature of the ancestral Front Range throughout most of the Paleozoic. The narrow syncline
formed during the Late Cretaceous to Early Tertiary Laramide orogeny. Tectonism progressed from Late Cretaceous
thrust faulting and folding to later episodes of intrusion, volcanism, and reverse and  normal faulting. Major thrusts
occur along the northern and eastern margins of the basin and show as much as 20 miles of movement (Maughan,
1988). Superimposed within the syncline are high-angle reverse faults (up to 10,000 ft of displacement), normal
faults, tight folds, and volcanic rocks (Figure 81).

The basins preserve from 10,000 to 20,000 ft of sediments (sometimes stacked in thrust plates) (Savant
Resources LLC Report, 1999). Figure 82 shows stratigraphic columns for each park basin. Sediments of North and
Middle Park Basins are largely Mesozoic sands, shales, and marls (Figure 83). Southwestern South Park exhibits a
thick Paleozoic sequence of carbonates, shales, and arkosic sandstones (Figure 84). The Laramide orogeny caused a
period of basin-wide non-deposition, so Tertiary sediments unconformably overlie Cretaceous rocks. The Tertiary
section generally consists of non-marine clastics interspersed with coals and volcanics. Quaternary alluvium reflects
the present quiescent phase of the basin.

HYDROCARBON PRODUCTION

Exploration has found hydrocarbons in anticlinal folds associated with thrusting in the Upper Jurassic-Lower
Cretaceous shoreline sands of the North Park Basin (Figure 83). The Colorado Oil and Gas Conservation
Commission (1997) recorded a total of 16.5 MMBO and 12.3 BCF from Battleship, Lone Pine, and North and South
McCallum fields.

Target basin-centered gas intervals are in the Upper Cretaceous: the Apache Creek Sandstone of the Pierre Shale
and the brittle, calcareous shales of the Niobrara (Figure 82). There are numerous hydrocarbon shows but no recorded
production from the Apache Creek. The Pierre B sand is probably a sandstone equivalent to the Apache Creek and has
produced approximately 1.4 MMCFG and 10.5 MBO (Maughan 1988). Fractured shales of the Niobrara Formation
have produced about 278,000 BO and 156 MMCFG from the Delaney Butte, Michigan River, Canadian River,
Coalmont, Johnny Moore Mountain, and Carlstrom fields (Colorado Oil and Gas Conservation Commission, 1997).
Mallory (1977) provides details of this fracture play.
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EVIDENCE FOR BASIN-CENTERED GAS

The Apache Creek Formation in South Park has had significant hydrocarbon shows. In 1999 Savant Resources
LLC evaluated the basin and obtained gas data for the Hunt Tarryall Federal 1-17 well (Figure 84). The company
found a 24-ft section of the Apache Creek yielded 195 MCFD of pipeline-quality gas. Testing revealed 0.3 md matrix
permeability, 8.3% average porosity, and 0.52 psi/ft pressure gradient, which indicated formation damage. Savant
recalculated open flow for the entire section and found 1,500 to 2,945 MCFD without hydraulic fracturing and 7,344
MCFD with induced fracturing.

The Federal 1-17 well data demonstrates Spencer’s (1987) and Surdham’s (1995) characteristics for accumulation
of basin-centered gas:

1. Overpressuring of the formation occurs below 10,000 ft. The Apache Creek Sandstone at 11,150 feet
displayed a pressure gradient of 0.52 psi/ft.

2. Dry hydrocarbons are the fluid-pressuring phase and rarely produce water. The pressure test recovered dry gas
of pipeline grade (1021 Btu).

3. Temperature of the overpressured rock is 180-2300 F or greater. The temperature of the Apache Creek
Sandstone was 2300 F.

4. Source beds can generate hydrocarbons at rates exceeding loss. Minimum vitrinite reflectance (Ro) is 0.6%
in oil-producing source beds and greater that 0.7% in gas-producing source beds. Pierre and Upper Niobrara
shales exhibit Ro values between 1.3 and 1.4% Ro. With TOC values around 1.3% and S1 + S2 values up
to 2.6 mg/gm, these rocks demonstrate additional generation potential.

5. Overpressuring is in tight strata. Permeabilities ranging from 0.18 to 0.4 md typify the tight strata and
suffice for production, after induced fracturing.

Based on available information (such as a net pay of 100 ft and extensive reservoirs in the South Park thrust
sheet), Savant Resources (Denver, Colorado, written communication, 1999) calculated gas reserves of 1.4-2.3 TCF
in the Apache Creek play. Depth to the Apache Creek is 11,150 feet in the Hunt well and varies widely (Figure 84)
(Wellborn, 1977). Similar thrusts containing the prospective horizon at the required depth could create additional
prospects. Notable secondary targets include the Fox Hills Sandstone, the Upper Transition Member of the Pierre
Shale, the Niobrara Formation, the Frontier Sandstone, the Dakota Group, and the Garo (Entrada) Sandstone
(Figure 82). Although South Park has had no production to date, a blow-out in the Pierre Shale and hydrocarbon
seeps (Elkhorn Thrust, Three Mile Seep, and Willow Creek Pass) indicate a potential for an unconventional deep gas
play. Total organic carbon (C) content for the Pierre Shale ranged from 0.1 to 1.5% (Barker et al., 1996; Savant
Resources LLC Report, 1999), and 1.4 to 2.1% for the Mowry Shale (Aldy, 1994).

Since the Apache Creek Formation also exists in North and Middle Park, basin-centered gas plays may
potentially occur in those basins as well.



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountains and Northern Great Plains Province, Colorado Park 
Basins; unconventional basin-centered gas play, Upper Cretaceous Pierre 
Shale (Apache Creek Sandstone) through Jurassic Entrada.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Source Rocks: organic-rich layers of the Niobrara (Maughan, 1989) and the 
Sharon Springs Member of the Pierre Shale. (Gautier et al., 1984). Primary 
reservoirs: Upper Cretaceous Apache Creek Sandstone and

calcareous shales of the Niobrara. Secondary reservoirs: Cretaceous Fox 
Hills Sandstone, Upper Transition Member of the Pierre Shale, Niobrara Fm, 
Frontier Sandstone, Dakota Group, and Jurassic Entrada Sandstone.

b. Total Organic Carbons 
(TOCs)

Pierre Shale 0.1 to 1.5% (Barker, 1996) and 1.3% (Savant Resources LLC 
Report, 1999); Mowry Shale 1.4-2.1% (Aldy, 1994).

c. Thermal maturity Ro of Pierre and Niobrara ranges from 1.3 to 1.4.

d. Oil or gas prone Gas prone.

e. Overall basin maturity Because of several periods of Laramide volcanism, certain areas of the basins 
such as Cameron Pass may be overmature; but this is generally not a problem 
(Maughan, 1988).

f. Age and lithologies North Park contains Permian through Tertiary sandstones, shales, and 
volcaniclastics, with lesser amounts of carbonates and marls. South Park 
contains a thick sequence of Paleozoic arkosic sandstones, carbonates, and 
shales.

g. Rock extent/quality The shoreline sands of the Apache Creek appear throughout the 27 wells in 
South Park and have yet to be studied in North Park. Niobrara is present 
throughout the Park Basins; both are of tight reservoir quality. Niobrara and

Pierre source rocks also occur basin wide and have adequate TOC and 
vitrinite reflectance values.

h. Potential reservoirs Minor production in North Park Basin (Maughan, 1988) in both the Pierre 
and Niobrara.

i. Major traps/seals Pierre and Niobrara shales or any of the numerous thrust faults such as the 
Elkhorn or the South Park serve as physical seals. Pressure seals occur 
around a depth of 10,000 ft.

j. Petroleum 
generation/migration 
models

In-situ generation is the accepted model.

k. Depth ranges Minimum depth of 10,000-20,000 ft.

l. Pressure gradients 0.52 psi/foot (Savant Resources LLC Report, 1999)



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

The only production is in North Park Basin.  Niobrara fractured shale 
production occurs at Canadian River, Coalmont, Carlstrom, Grizzly Creek, 
Johnny Moore Mountain, North and South McCallum, Michigan River, and

Delaney Butte fields. Pierre sand production is small and limited to North 
and South McCallum fields.

b. Cumulative production 277.9 MBO and 156 MMCFG from the Niobrara (Colorado Oil and Gas 
Conservation Commission, 1997) and 1.4 MMCFG and 10.5 MBO from the 
Pierre (Maughan, 1988)

Economic 
Characteristics:

a. Inert gas content Gas at North and South McCallum fields measures 95% CO2 (Carpen, 
1957). This may be a local phenomenon where igneous intrusions have 
carried CO2 through the normal faults associated with these fields

(Biggs, 1957). Savant Resources LLC (report, 1999) has sampled pipeline-
grade gas (1021 Btu) in the Apache Creek Sandstone. There is very little test 
data of the Niobrara, but one test at Delaney Butte shows a low Btu of 212

(Wellborn, 1983).
b. Recovery Recoveries around 2 TCF are only hypothetical at this point and will be a 

function of permeability and porosity combined with natural and induced 
fracturing.

c. Pipeline infrastructure Public Service of Colorado and Colorado Natural Gas pipelines are currently 
in the basin.

d. Exploration maturity 
relative to other basins

Immature; sparsely drilled.

e. Sediment consolidation Most rocks are well indurated

f. Porosity/completion 
problems

Natural fractures and overpressuring enhance flow for tight sandstones and 
calcareous shales. Hydraulic fracturing is probably essential to develop this 
play.

g. Permeability

h. Porosity



Figure 81. Generalized geologic map of the Colorado Park basin province showing locations of cross sections
A-A' (Figure 83) and B-B' (Figure 84).  After Maughan (1989).
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Figure 82. Stratigraphic column of Colorado Park basins showing source rock and reservoir potential.  After
Wandrey et al. (1996).
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Figure 83. Generalized cross section A-A' of North Park basin, Colorado.  Location shown on Figure 81. After Lange and Wellborn (1985).
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Figure 84.Generalized cross section B-B' of South Park basin, Colorado. Location shown on Figure 81.  After Savant Resources LLC (1999).
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PERMIAN BASIN (ABO FORMATION)

GEOLOGIC SETTING

The Permian Basin of west Texas and eastern New Mexico covers about 76,250 square miles of the southwest
part of the North American mid-continent craton (Frenzel et al., 1988). Figure 85 shows the location and generalized
structure of the area. This part of the craton remained exposed until Late Cambrian, when marine transgression
formed the Tobosa Basin and filled it mainly with carbonate and fine-grained clastic sediments. The Tobosa Basin
was relatively stable until the Late Mississippian, when structural deformation began forming the Matador Uplift,
Central Basin Platform, and Diablo Platform. By the Early Pennsylvanian, the Tobosa Basin had broken up into the
main elements making up the present day Permian Basin: Northwest Shelf, Delaware Basin, Central Basin Platform,
Midland Basin, Val Verde Basin, and Eastern Shelf (Frenzel et al., 1988). Pennsylvanian strata of the basin consists
of marine and paralic sandstones, shales, and carbonates.

A final structural pulse deformed the Central Basin and Diablo Platforms in the Early Permian (Wolfcampian).
Permian sedimentation filled the Delaware and Midland Basins with deep-water carbonates and shales, basin-margin
reef carbonates, evaporites, and red-bed sequences. Permian strata contain most of the hydrocarbon reserves within the
basin. Since the Triassic, the Permian Basin has remained tectonically stable.

HYDROCARBON PRODUCTION

Figure 86 shows stratigraphic columns for various basins and platforms in the area. Originally assigned to a
Permian (lower Leonardian) red-bed sequence in the Northwest Shelf, the Abo Formation has also been applied to
dolomitized carbonates along the northern margins of the Delaware Basin and the Central Basin Platform. The age-
equivalent strata in the Central Basin Platform and in the Delaware and Midland Basins have produced hydrocarbons
historically. In the Midland Basin, Abo age-equivalent and mature Spraberry Trend covers hundreds of square miles
and has produced over 1,388 BCF of gas plus associated condensate (Bebout and Garret, 1989).

Production from the Abo Formation derives from two plays: platform carbonates and fluvial/deltaic sandstones
(Figure 87). Most platform-carbonate production comes from the Abo reef trend (Figure 85). The reef reservoirs are
stratigraphic traps with clean, white-tan-gray, fine to coarsely crystalline dolostones. Porosity is secondary,
consisting of vugs, vertical fractures and intercrystalline pores. Cumulative production from the reef reservoirs was
456 BCFG as of December 31, 1990. A smaller shelf sub-play also exists, and consists of dolomitized back-reef
sediments having irregularly distributed porosity and permeability. Traps are low-relief anticlines that have produced
227 BCFG through 1990.

The Abo fluvial/deltaic sandstone is a tight gas play on the Northwest Shelf. Production comes from lenticular,
red, very fine to fine grained, silty, arkosic arenites (Broadhead, 1993a, c). A clay-hematite matrix has reduced the
primary porosity. Deep-seated faults that tap into older Paleozoic source beds have charged these reservoirs. The three
main fields have produced 273 BCFG from stratigraphic traps as of December 31, 1990.
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EVIDENCE FOR BASIN-CENTERED GAS

Neither of the two Abo plays are basin-centered. The carbonate play rings the Permian basin margin, and the
sandstone play is confined to the northern Northwest Shelf area (Figure 87). However, both plays have anomalous
pressure gradients associated with them. The fluvial/deltaic sandstones show a significant underpressure to producing
fields (Broadhead, 1993c). The single shelf-carbonate sub-play field has a normal pressure gradient. Abo reef
carbonates display a trend: near-normal pressure gradients exist in the south and become underpressured northward
(Broadhead, 1993b). Similar south-to-north underpressure gradients are visible in data from the underlying Wolfcamp
Formation, overlying Yeso Formation, and basinal-equivalent Bone Spring Formation (Broadhead, 1993a):

Unit or Lithology Depth (ft) Pressure Gradient (psi/ft) Temperature (°F)

Yeso Fm.................................5,000 – 7,030..................0.263 – 0.495.........................105 – 122

Bone Spring Fm.......................5,480 – 9,700..................0.343 – 0.428.........................128 – 180

Abo sandstones.........................2,830 – 4,180..................0.295 – 0.387.........................101 – 114

Abo reef carbonates....................6,020 – 8,650..................0.286 – 0.430.........................109 – 140

Wolfcamp Fm.........................8,020 – 13,250.................0.354 – 0.843.........................129 – 193



KEY ACCUMULATION PARAMETERS

Identification Southwestern U.S., west Texas and eastern New Mexico. Lower Permian 
Abo Formation

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Source intervals: poorly documented and appear to be largely speculative in 
the literature.  Major sources are thought to occur in Permian basinal shales 
and carbonates (Wolfcamp and Bone Springs), Permian shelf shales

and low energy carbonates (Wolfcamp and Abo/Wichita-Albany), 
Pennsylvanian limestones and shales, and Upper Devonian (Woodford)– 
Mississippian (Barnett) shales (Broadhead, 1993a; Hanson et al., 1991).

Reservoir intervals: Abo platform carbonates are mainly dolomite, Abo 
fluvial/deltaics are mainly red-bed sandstones.

b. Total Organic Carbons 
(TOCs)

1-3% for Midland Basin Spraberry black shales (Ramondetta, 1982)

c. Thermal maturity Kerogen Type:  algal and amorphous for Midland Basin Spraberry black 
shales (Ramondetta, 1982)

d. Oil or gas prone Both oil and gas prone.

e. Overall basin maturity Mature

f. Age and lithologies Permian Abo platform carbonates-lower Leonardian, Permian Abo 
fluvial/deltaic sandstones-lower Leonardian (Broadhead, 1993b, c).

g. Rock extent/quality Source rock occurs basin wide, Abo platform carbonate reservoir rock has a 
distribution which follows the margin of the Delaware and Midland Basins 
and the Central Basin Platform, Abo fluvial/deltaic sandstones are found

north of the barrier reef trend on the Northwest Shelf.
h. Potential reservoirs

i. Major traps/seals Abo platform carbonates: anticline/dome and lateral changes in porosity 
and/or permeability because of changes in depositional environment; Abo 
fluvial/deltaic sandstones: stratigraphic trap, but poorly understood 
(Broadhead, 1993b, c).

j. Petroleum 
generation/migration 
models

Barber (1979)

k. Depth ranges Abo platform carbonates, 6020-8650 ft; Abo fluvial/deltaic sandstones, 2830-
4180 ft (Broadhead, 1993b, c)

l. Pressure gradients 0.263 to 0.843 psi/ft.



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Abo platform carbonates:  Brunson South, Corbin, Empire, Lovington, 
Skaggs, Vacuum, Vacuum North, Wantz, and Kingdom

Abo fluvial deltaic sandstones:  Pecos Slope West, Pecos Slope South, and 
Pecos Slope

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content Abo fluvial/deltaic sandstones: CH4-86.6%, C2H6-4.8%, all other CxHx-
3.4% N2-5.22%, CO2-0.03% (Montgomery, 1983). 

Composite Abo data: CH4-84.0%, C2H6-4.7, all other CxHx-3.9%, CO2-
0.2%, N2-6.6%, He-0.2%  (Hogman et al., 1993)

b. Recovery

Fields/
Reserves

Cumulative
Gas (BCF)

Number of
Wells

Abandoned
Wells

Spacing
(acre)

    Abo Platform Carbonates   

Brunson South..........................129.1 ......................165............ ............. 12........... .............40

Corbin ..................................... 20.2 ....................... 33............ ............. 10........... .............40

Empire....................................293.6 ......................391............ ............. 47........... .............40

Lovington................................. 13.0 ....................... 26............ ............. 43........... .............40

Skaggs ....................................... 7.0 ......................... 6............ ............... 2........... .............40

Vacuum...................................129.2 ......................134............ ............. 45........... .............40

Vacuum North........................... 40.8 ......................284............ ............115........... .............80

Wantz...................................... 50.5 ......................144............ ............112........... .............40

Kingdom.................................. 51.0 ......................184............ ............................ .............40

    Abo Fluvial/Deltaic Ss   

Pecos Slope West....................... 21.4 ......................170............ ............. 18........... ........... 160

Pecos Slope South ..................... 20.5 ......................107............ ............... 4........... ........... 320

Pecos Slope .............................230.8 ......................603............ ............. 11........... ........... 160

Asreen (1990); Broadhead (1993b, c); Frank (1996)



c. Pipeline infrastructure Very good. There are numerous gas lines in the basin.

d. Exploration maturity 
relative to other basins

Mature

e. Sediment consolidation Good to moderate consolidation.

f. Porosity/completion 
problems

Abo fluvial/deltaic sandstones are classified as tight gas. These reservoirs 
require acidization and artificial fracturing. Average in-situ permeability is 
0.0067 md; average porosity is 12-14% with 9% necessary

for economic production. Production operates on a pressure depletion/gas 
expansion drive. Abo platform carbonates have an irregular distribution of 
secondary porosity, averaging 6-14% but ranging from 1.5-18.3%.

Permeability also has an irregular distribution resulting in poor fluid 
communication within the reservoir. Permeability averages 1.5-25 md but 
ranges from 0.1-1,970 md. This play operates on a primary gas-cap

expansion drive augmented by secondary gas-cap growth due to pressure 
dissolution (Broadhead, 1993b). In the Empire field some component of 
water drive may be operating (LeMay, 1972).

g. Permeability 0.0067 md

h. Porosity 12 to 14%
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RATON BASIN

GEOLOGIC SETTING

The Raton basin straddles the Colorado-New Mexico state line in southeastern Colorado and northeastern New
Mexico (Figure 88). The Apishapa Uplift and the Wet Mountains separate the Raton from the Denver basin to the
north. The Sangre de Cristo Mountains form the western boundary, and the Sierra Grande Uplift limits the east side
(Larsen, 1985). The Raton displays an arcuate shape and asymmetric profile–its western flank dips steeply and is
highly faulted. Figure 89 shows the post-Paleozoic stratigraphy for the basin; most rocks with hydrocarbon content
are Cretaceous in age.

The Raton is the southernmost basin formed during the Laramide orogeny of late Cretaceous to early Tertiary
time. Initial Laramide uplift added coarse-grained siltstones, sands and sandy shales to the upper Pierre Shale and
lower Trinidad Sandstone stratigraphy (Figures 89 and 90) (Stevens et al., 1992). The stratigraphic succession
includes rocks from Precambrian to Miocene and Quaternary ages, but Cambrian through Silurian rocks are absent
(Figure 89). A thin Devonian through Mississippian section rests directly on basement rocks. Gromer (1982) notes
Raton sediments probably thicken to 25,000 ft at the western edge of the basin. The southern part of the basin does
not contain late Cretaceous or Tertiary coal bearing strata.

Intrusive activity began during the Eocene and continued throughout the Oligocene. In the immediate Spanish
Peaks area, two stocks and radial dikes and sills intruded the country rock. East-northeasterly trending dikes intruded
an area east of the Spanish Peaks (Larsen, 1985). Other igneous bodies include late Tertiary and Quaternary basalt
and andesite flows derived from the Raton volcanic field on the southeastern margin of the basin (Larsen, 1985). The
plutonic and volcanic activity all contributed to thermal maturation of hydrocarbon source rocks and generated major
resources of carbon dioxide.

HYDROCARBON PRODUCTION

Aside from coalbed methane produced from the Vermejo and Raton coals within the past few years, no other
commercial hydrocarbon production has occurred. Dolly and Meissner (1977) estimated these coal beds alone
generated more than 20 trillion ft3 of gas.

Zones that have oil and gas shows include the Trinidad Sandstone, Pierre Shale, Niobrara chalks and shales,
Benton Group (Graneros Shale, Greenhorn Limestone, Carlile Shale and Codell Sandstone), and lower Cretaceous
Dakota Sandstone (Figure 89)

EVIDENCE FOR BASIN-CENTERED GAS

Evidence that a basin-centered accumulation might exist within the Raton Basin includes the following:

1) a widespread resistivity anomaly pattern in the Trinidad Sandstone (Figure 91) (Rose, et al., 1986).
Maximum resistivities in the Raton Sandstone increase with burial depth and near volcanic centers;

2) extensive underpressuring (Dolly and Meissner, 1977);

3) abundant gas shows found in wells drilled throughout the basin;

4) vitrinite reflectance (Ro) reaches a maximum of 1.5, indicating thermal maturity. Figure 92 shows Ro
isopleths for the Raton Basin; and

5) the Trinidad is the seaward equivalent of the San Juan Basin’s Pictured Cliff Sandstone, a classic basin-
centered accumulation (C. Spencer, U.S. Geological Survey, 2001, written communication).



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountain, Raton Basin, early to late Cretaceous

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Cretaceous Dakota Sandstone and Pierre Shale through lower Paleocene 
Raton formation

b. Total Organic Carbons 
(TOCs)

2.95% in the Trinidad area, 1.34-2.43% in the Raton area, 0.3 and 5.37% at 
Huerfano Park, west of Walsenberg (Sharon Springs member of the Pierre 
Shale) (Gautier et al., 1984)

c. Thermal maturity Ro = 1.5%  near the center of the basin to 0.7% near the southern, eastern 
and northern basin margins, along the Trinidad Sandstone outcrop (vitrinite 
values from Vermejo coals) (Figure 92) (Stevens et al., 1992)

d. Oil or gas prone Gas prone.

e. Overall basin maturity Most of the basin is mature.  The outcrop of the Trinidad sandstone appears 
to fall within the 0.7-0.8 Ro (Vermejo coals) range.

f. Age and lithologies early to late Cretaceous and early Paleocene; Graneros Sh, Greenhorn Ls, 
Carlile Sh, Niobrara Chalk/Shale/Marl, Pierre Sh, Trinidad SS, Vermejo and 
Raton shales, sands and coals

g. Rock extent/quality apparent basin-wide source and reservoir-rock distribution

h. Potential reservoirs Trinidad SS, Pierre Sh, Niobrara Chalk/Sh/ Marl, Codell Sh

i. Major traps/seals Pierre Shale, Vermejo Fm

j. Petroleum 
generation/migration 
models

In situ generation of gases from intermixed source rock (coals, shales and 
chalks)/reservoir rock facies.  Weimer’s Denver basin “cooking pot” model 
may be applied in this basin as well (Weimer, 1996).

k. Depth ranges 5000+ ft Trinidad sandstone in the center of the basin to 1500 ft on the 
eastern flank.  Dakota Sandstone is ±15,000 ft in the center.

l. Pressure gradients Underpressured at shallow levels, Trinidad and upper Pierre = 0.33 psi/ft; 
Raton Formation (1630-1760 ft) = 0.25 psi/ft in the northern part of the basin 
(Rose et al., 1986).  Possible deep overpressure in Dakota-Niobrara?



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

No producing fields except for shallow Raton and Vermejo coal-bed methane 
development, and major CO2 field.

b. Cumulative production none

Economic 
Characteristics:

a. Inert gas content The chemical content of the coal gases should approximate that expected 
from nearby underlying rocks.  Heating value of the Raton and Vermejo coal 
gases range from 997-1272 btu/cu ft, with nitrogen ranging from 0.1–0.8%.

Carbon dioxide content ranges from 0 – 1.1% (Scott, 1993).
b. Recovery No current commercial gas production exists except from coal seams.

c. Pipeline infrastructure Currently poor, but will be developed with increasing coalbed methane 
drilling.

d. Exploration maturity 
relative to other basins

Immature

e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial, especially in 
the Niobrara Chalk (Pollastro and Martinez, 1985).

f. Porosity/completion 
problems

Chalks and other tight (low permeability) rocks have potential to produce 
where they are naturally fractured (Florence-Canon City Field to the north in 
the Canon City Embayment). Low pressures and water sensitive clays may

cause additional evaluation problems (Dolly and Meissner, 1977).
g. Permeability Trinidad Sandstone, less than 0.1 to 344 md; shales and chalks, less than 1.0 

md.

h. Porosity Trinidad Sandstone, 12%; shales and chalks, highly variable.
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Figure 89. Columnar section of post-Paleozoic rocks in the Raton basin.  After Rose et al. (1986), and Dolly and 
Meissner (1977).
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Figure 90. Generalized cross section showing Trinidad Sandstone depositional environments in the Raton Basin.  After Rose et al. (1986).
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RIO GRANDE RIFT (ALBUQUERQUE BASIN)

GEOLOGIC SETTING

The late Cenozoic Rio Grande Rift extends from the upper Arkansas Valley in Colorado, south through central
New Mexico and the Big Bend area of Texas into the state of Chihuahua, Mexico (Figure 93) (Molenaar, 1996). The
rift separates the North American Craton from the Colorado Plateau. Opening of the rift may have resulted from
clockwise rotation of the Colorado Plateau about an Euler pole located in northeast Utah (Keller and Cather, 1994).

The rift system developed in terrain elevated during Laramide time because of crustal thickening (Keller and
Cather, 1994). Initial sedimentation commenced in late Oligocene to early Miocene, with rapid extension beginning
in middle to late Miocene. Miocene extension in the north-central part of the rift was left-oblique. The amount of
extension decreases in the southern half of the rift, which expands in width and becomes a series of parallel basins
with intrarift uplifts and tilted fault blocks.

The rift contains over thirty named basins (Figure 93), most of which are first-order half-grabens; basin
asymmetry shifts across accommodation zones (Chapin and Cather, 1994). Drilling and geophysical exploration
continue to reveal and delimit new sub-basins. To date, tentative exploration has focused on two major basins, the
San Luis in southern Colorado, and the Albuquerque basin in northwestern New Mexico.

The deepest part of the rift occurs along the east side of the San Luis basin. The San Luis basin consists of two
half-grabens (the western Monte Vista graben and the eastern Baca) with a central horst between them.

The Albuquerque basin lies between the Sandia and Manzano Mountains to the east and the Ladron and Lucero
uplifts to the west. The basin contains two half-grabens separated by the northeast-southwest trending Tijeras fault
zone (Figure 94). The west-dipping northern graben contains a listric fault system (Figure 95); the east-dipping
southern graben exhibits high-angle normal faults (Figure 96). Pre-existing Precambrian basement structures may
have controlled Tertiary structures (Russell and Snelson, 1994).

Basin fill consists of poorly indurated alluvial fans, axial river sands and gravels, playa deposits, eolian dune
sands, and pyroclastic volcanics of the Santa Fe Group. The San Luis basin contains at least 7,000 ft of fill;
Mesozoic sediments lie beneath the Tertiary valley deposits. Over 14,000 ft of sediment fills the Albuquerque basin.
Brister and Gries (1994) reported coal occurrence within the Santa Fe Group in the San Luis basin. Figure 97 shows
the general stratigraphy for the Albuquerque Basin and Rio Grande Rift zone.

HYDROCARBON PRODUCTION

Most exploration has concentrated on the San Luis and Albuquerque basins. In 1993 Lexam Exploration drilled
42 gold exploration holes into the east side of the Baca graben at the base of the Sangre de Cristo Mountains; 27
wells showed oil at depths between 300 and 800 ft.. Several test wells had gas shows within the Santa Fe Group,
and one well reportedly intercepted coal within the Santa Fe Group. Six of the exploration wells penetrated a
previously unknown Cretaceous section. Drilling in the Albuquerque basin has taken place in both north and south
grabens (Figures 95 and 96). Of the 60 or so exploratory wells drilled, only two have penetrated the Mesozoic
section (Black, 1998).

Total organic carbon (TOC) content for the Cretaceous shales of the eastern San Luis basin ranges from 1.63 to
7.31% (Morel and Watkins, 1997). For the Albuquerque basin’s north graben, Broadhead et al. (1998) reported TOC
values of about 1.4 to 10.1% in the Mancos Shale and 22.3 to 28.9% in the upper Mesaverde coals.
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EVIDENCE FOR BASIN-CENTERED GAS

Possible basin-centered gas might occur within the Cretaceous section of the Baca Graben in the San Luis Basin
and in the Cretaceous and Jurassic sections of the Albuquerque basin. The areal extent of any potential accumulation
within the Mesozoic sediments remains unknown. Other basins within the Rockies with a similar Cretaceous
section such as the Piceance Basin do host basin-centered gas accumulations.



KEY ACCUMULATION PARAMETERS

Identification Rio Grande Rift (Albuquerque-Santa Fe Rift, Province 023–Molenaar, 
1996), basin-centered gas play in Cretaceous sandstones of San Luis and 
Albuquerque Basins

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Cretaceous shales (Mancos) of San Luis Valley and Albuquerque basins, 
Todilto Limestone additional source in Albuquerque Basin. Dakota in both 
basins with Morrison in Albuquerque Basin.

b. Total Organic Carbons 
(TOCs)

San Luis Basin: Cretaceous shales of eastern basin, 1.63 to 7.31% (Morel 
and Watkins, 1997).  Some coal had been found within the Santa Fe Group in 
the San Luis Basin (Brister and Gries, 1994).

Albuquerque basin: Mancos shale (north graben) – 1.39 to10.1%, upper 
Mesaverde coals (also north graben) – 22.25-28.85% (Broadhead et al., 1998).

c. Thermal maturity San Luis Basin: Modeling by Morel and Watkins (1997) indicated source 
rocks entered oil and gas window 10 to 15 Ma. 

Albuquerque basin: levels of maturity on basin flanks from 9.0 to 2.0 %Ro, 
and Cretaceous section of Humble SFP #1 (sec. 18, T6N, R1W) from 12.0 to 
14.0 %Ro (condensate and wet gas) (Black, 1982).

d. Oil or gas prone Both oil and gas prone; type III kerogens limited; type II kerogen found in 
San Luis Basin.

e. Overall basin maturity San Luis Basin: moderate to mature. Albuquerque Basin: mature to 
overmature.  Anthraxalite reported in Cretaceous sediments in Humble SFP 
#1 (Black, 1982).  Play confined to shallower and less mature basin flanks.

f. Age and lithologies Cretaceous shales, sandstone for both basins. Albuquerque Basin has 
Pennsylvanian Todilto limestones in addition to Jurassic Morrison and 
Entrada sandstones (Figure 97).

g. Rock extent/quality In the eastern part of San Luis Basin, Cretaceous deposits are up to 45 mi 
long, 18 mi wide and 3,000 ft thick (Morel and Watkins, 1997). In the 
Albuquerque Basin, the Cretaceous extends across townships T2-3N and

R2W-4E (Black, 1982). The Cretaceous section consists of marine shales, 
marginal marine and fluvial channel sandstones.

h. Potential reservoirs At the present time there is no hydrocarbon production within either the San 
Luis or Albuquerque Basins.

i. Major traps/seals Stratigraphic traps within the sandstones are possible.  The overlying 
Cretaceous marine shales and thinner shales within the sandstones provide 
seals.  Jurassic shales are potential seals within the Albuquerque Basin.

Structural traps may exist.
j. Petroleum 

generation/migration 
models

Both in-situ and long distance migration.

k. Depth ranges San Luis Basin: 7,000 ft to 17,000 ft (Brister and Gries, 1994); 
Albuquerque Basin: 5,000 .ft to 12,000 ft (Lozinsky, 1994).



l. Pressure gradients The Santa Fe Group of the San Luis Basin supports substantial artesian water 
flows.  Insufficient pressure data is available for the Mesozoic section.

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content Unknown at present.

b. Recovery

c. Pipeline infrastructure Gas pipeline infrastructure is non-existent to limited.

d. Exploration maturity 
relative to other basins

Immature.

e. Sediment consolidation The Santa Fe Group is unconsolidated.  The Mesozoic and Paleozoic sections 
are well indurated.

f. Porosity/completion 
problems

There may be parts of the Albuquerque basin which are tightly cemented in 
the Cretaceous.  Both basins are likely to have swelling clays within the 
Cretaceous sandstones that will need to be drilled and treated with

appropriate fluids.  Fracture stimulation will likely be needed to obtain 
commercial production.

g. Permeability Unknown

h. Porosity 8-24% (Black, 1982).



Figure 93. Map of southern Colorado, New Mexico, and western Texas showing Cenozoic volcanic fields, 
basins of the Rio Grande rift, and locations of cross sections A-A' (see Figure 95) and B-B' (see
Figure 96).  After Keller and Cather (1994).
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Figure 94. Generalized structure model of the Albuquerque Basin showing opposing structural asymmetry of 
the north and south halves of the basin and the controlling master normal faults.  After Russell and
Snelson (1990), and May and Russell (1994).
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Figure 95. Cross section A- A' of the North Graben Block of the Albuquerque Basin, Rio Grande Rift zone, New Mexico.  Figure 93 shows the location
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Figure 96. Cross section B-B' of the South Graben Block of the Albuquerque Basin, Rio Grande Rift zone, New Mexico.  Figure 93 shows the location
of the section. After Russell and Snelson (1994).
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Figure 97. Stratigraphic column for the Albuquerque Basin and Rio Grande Rift zone.  After Molenaar (1996). 
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SACRAMENTO BASIN

GEOLOGIC SETTING

The present day Sacramento Basin lies within California’s northwest-southeast trending Great Valley, between
the Sierra Nevada Range on the east, the Coast Ranges on the west, the Klamath Mountains to the north, and the
Stockton Arch on the south (Figure 98); the Stockton Arch separates the Sacramento from the adjoining San Joaquin
basin.

Structural development began in late Jurassic time as a forearc basin formed between the Sierra highlands on the
east and a wedge of Franciscan rock to the west. In early Cretaceous time, the basin began to fill with deep water
sands and shales. By the late Cretaceous, delta-slope and turbidite fan systems dominated sedimentation, and the basin
developed its characteristic asymmetry. The basin deep developed below the break in slope of the forearc’s  shelf.

Structural styles differ across the basin. The eastern flank exhibits high angle normal faults typical of
extensional faulting of a stable shelf into an adjoining basin. Complex folding and faulting characterize the
tectonically active western side. The Stockton Arch Fault developed at the close of the Cretaceous period and divided
the forearc basin into the two present-day subbasins. Continued subsidence during the early Tertiary led to several
cycles of marine deposits overlain by non-marine sediments. Structural deformation continued throughout the
Tertiary, especially on the west sides of both basins (Callaway and Rennie, 1991; Montgomery, 1988c).

The Forbes Formation is a mud-rich turbidite fan system that prograded southward along the Sacramento Basin
axis (Imperato et al., 1990), and has historically had significant oil and gas development. This formation
unconformably lies over the late Cretaceous Dobbins Shale, and in turn underlies the late Cretaceous Kione Delta
units and Sacramento Shale (Figure 99).

HYDROCARBON PRODUCTION

Hydrocarbons in the Forbes usually occur in discreet, lenticular stratigraphic traps or in combination structural-
stratigraphic traps, where structure has concentrated gas. Traps often involve multiple fault blocks with sealing faults
and can be quite complex. Productive sands have porosities of 30% and permeabilities of 100 md (millidarcies), and
are usually 15 to 30 ft thick. Stacked sands often allow multiple completions in each well bore. In the northern
Sacramento Basin, the Forbes generally produces to a depth of 9,000 ft. Permeability decreases with depth, so few
wells have penetrated the Forbes in the deeper southern half of the basin. One now-abandoned well exceeded 11,000 ft
depth, but produced only a non-commercial 0.12 BCFG (Callaway and Rennie, 1991; Montgomery, 1988c;
Weagant, 1972, 1986; and Zieglar and Spotts, 1978).

Overpressure often occurs in the Forbes Formation, and pressure gradients rise as high as 0.8 to 9 psi/ft below
6,000 ft depth (Lico and Kharaka, 1983). In some cases, changes in pressure gradients may correlate with
hydrodynamic gradients or the post-depositional emplacement of  magmatic stocks. Overpressure along the west
flank of the Sacramento and San Joaquin basins may have some relation to structural compression associated with
Mesozoic subduction and more recent plate movements (Montgomery, 1988c; and Weagant, 1972, 1986)

Shales of the Dobbins, the Sacramento and the Forbes formations are likely gas sources. Cretaceous shales of
the Sacramento and northern San Joaquin basins generally contain less than 1.0% total organic content (TOC). The
organic material is largely humic or non-sapropelic and therefore gas prone. Gas generation in Cretaceous rocks
probably began at burial depths of 13,000 to 15,000 ft (Figure 100). The “Delta depocenter” in the southern
Sacramento Basin was probably the major source for gas in this basin and for the gas fields in the northern San
Joaquin (Zieglar and Spotts, 1978; Callaway and Rennie, 1991).
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EVIDENCE FOR BASIN-CENTERED GAS

The northern Sacramento Basin is a dry-gas province, and the Forbes is a major conventional producer in the
basin. While the overlying Cretaceous Kione and Tertiary sands are also important producers, the Forbes will most
likely host a basin-centered accumulation. Evidence for such accumulations in the basin include the following:

1) Cretaceous shales of the Dobbins and Forbes formations are mature in the deepest parts of the Sacramento
Basin, especially in the Delta depocenter (Zieglar and Spotts, 1978).

2) The turbidite fan nature of the Forbes ensures reservoirs encasement within the source shales (Weagant,
1972, 1986; Montgomery, 1988c).

3) Overpressuring occurs in the Forbes, although hydrodynamics and post-depositional structural movement
complicate pressure distribution in the formation. A better understanding of pressure distribution in the
Forbes, especially in the deeper Sacramento Basin would aid in evaluating the potential for the preservation
of reservoir permeability at depth. (Weagant, 1972, 1986; Montgomery, 1988c).



KEY ACCUMULATION PARAMETERS

Identification Pacific Coast, Sacramento and San Joaquin Basins, Forbes formation

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Dobbins and Sacramento shales and shales of the Forbes Formation; 
reservoirs are turbidite sands of the Forbes (Callaway and Rennie, 1991; 
Zieglar and Spotts, 1978; Magoon et al., 1996; Weagant, 1972, 1986).

b. Total Organic Carbons 
(TOCs)

Less than 1.0% (Zieglar and Spotts, 1978).

c. Thermal maturity Cretaceous shales are gas mature below 13,000 ft (Zieglar and Spotts, 1978).

d. Oil or gas prone Gas prone (Zieglar and Spotts, 1978).

e. Overall basin maturity Basin normally mature; Tertiary generally not mature.

f. Age and lithologies Late Cretaceous shales and sands.

g. Rock extent/quality Forbes Fm present throughout Sacramento Basin; Forbes present in northern 
half of San Joaquin Basin.  Reservoir rocks are discontinuous and are 
distributed vertically throughout formation.

h. Potential reservoirs Conventional production from Forbes; non-conventional, basin centered 
production not established.

i. Major traps/seals Stratigraphic and combination structural-stratigraphic traps are common.  
Seals include encasing shales and sealing faults.

j. Petroleum 
generation/migration 
models

Onset of gas generation at burial depths of 13,000 ft; migration to 
conventional traps over distances of 60-100 mi (Zieglar and Spotts, 1978; 
Magoon et al., 1996b)

k. Depth ranges Production from conventional reservoirs at depths of 4000 to 9000 ft; deepest 
completion 11,064-11,144 ft (California Division of Oil, Gas and 
Geothermal Resources, 1997).

l. Pressure gradients Overpressure often occurs in Forbes Fm; gradients range from 0.8 to 9 psi/ft 
below 6,000 ft depth (Lico and Kharaka, 1983).



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Rice Creek, Tisdale, Grimes, and Arbuckle fields (California Division of Oil, 
Gas and Geothermal Resources, 1997).

b. Cumulative production Rice Creek, 35 BCFG; Tisdale, 45 BCFG; Grimes, 619 BCFG; and 
Arbuckle, 78 BCFG (California Division of Oil, Gas and Geothermal 
Resources, 1997).

Economic 
Characteristics:

a. Inert gas content Nitrogen is common in the Sacramento Basin; gases are blended to reach 
commercial BTU levels.

b. Recovery Forbes is currently regarded as a conventional play and operators are 
reluctant to compete zones that appear to have low deliverability/recovery.

c. Pipeline infrastructure Good to excellent.

d. Exploration maturity 
relative to other basins

Mature.

e. Sediment consolidation Normal consolidation with depth.

f. Porosity/completion 
problems

Forbes is currently regarded as a conventional play, and operators complete 
sands with 10% or greater porosities. Overpressure conditions occur 
throughout the play, but are often related to local structural conditions 

(Weagant, 1972, 1986; Montgomery, 1988c).
g. Permeability

h. Porosity
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Figure 99. Stratigraphic column for the Sacramento Basin, California.  After Montgomery (1988c).
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SALTON TROUGH, CALIFORNIA

GEOLOGIC SETTING

The Salton Trough is an active rift basin lying within the Imperial Valley at the northern end of the Gulf of
California (Figure 101). The basin extends about 115 miles in length and 45 miles in width, and encompasses an
area of 4,500 square miles (Barker, 1996b). The rift apparently contains metamorphosed sediments, igneous
intrusions and rising upper mantle material (Figure 102). The transfer zones between the major strike-slip faults may
have active rhombic-shaped spreading centers, especially at the southern end of the Salton Sea and at Cerro Prieto
(Figure 101) (Lonsdale, 1989; and Mueller and Rockwell, 1991).

Paleogeographic reconstructions show that the Gulf of California opened during middle Miocene time and
reached its maximum northward extent in the early Pliocene (Smith, 1991). Deltaic and lacustrine sediments from
the Colorado River filled the northern end of the Gulf of California beginning 5.5 Ma, eventually cutting it off from
the marine seaway by 4 Ma (Schmidt, 1990). The basin now contains 16,000 to 20,000 ft of sediments and
metasediments, including Miocene to Pliocene-age evaporites, marine and continental deposits, and a thick section of
Pleistocene to Recent deltaic and lacustrine sediments (Helgeson, 1968; Muffler and Doe, 1968). Figure 103 shows a
general stratigraphic column for the Salton Trough (Muffler and Doe, 1968; Lucchitta, 1972). Dibblee (1984),
Gibson et al. (1984), and Kerr and Kidwell (1991) have described the sedimentary formations exposed in outcrops
along the western and eastern flanks of the Salton Trough. Mesozoic igneous and metamorphic rocks form the base
of the exposed section. Above this crystalline basement are alluvial fans and breccias of the Miocene Anza and Split
Mountain Formations. Interfingered with the Split Mountain is the Fish Creek Gypsum, a formation of gypsum and
anhydrite that indicates rift basin development began in middle Miocene time. Breccias and marine turbidites overlie
the evaporite beds and indicate rapid subsidence. The turbidites grade upward and laterally into shallow marine
shoreline deposits of the Pliocene Imperial Formation. These are overlain by deltaic and lacustrine sediments
deposited by the Colorado River. This basin has continued to subside, and recent erosion has not removed any
sediments.

Active strike-slip motion complicates the rift basin geology within the San Andreas, Imperial and Cerro Prieto
fault zones. Calculated slip rates for the various strike-slip faults in the Salton Trough range from 1.7 to 5.4 cm/year
(Duffield, 1976; Suarez-Vidal et al., 1991). According to Elders (1979), the Salton Trough is one of the most
earthquake-prone areas in North America. The basin undergoes active deformation, as indicated by movements
observed from tiltmeter and survey data. Lippmann and Manon (1987) described earthquake activity along the
Imperial and Cerro Prieto fault zones near Cerro Prieto geothermal field. Such seismic activity can potentially
disrupt or breach hydrocarbon traps and pressure seals, preventing accumulation of hydrocarbons.

HYDROCARBON PRODUCTION

To date, the Salton Trough has no recorded hydrocarbon production.
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EVIDENCE FOR BASIN-CENTERED GAS

According to gas sample data from geothermal wells and fumaroles, the main gas expelled in the basin is CO2.
Most samples show 80 to 90 wt % CO2 and only 3 to 5 wt% of hydrocarbon gases (Nehring and D’Amore, 1981;
1984). For many years a dry-ice factory produced CO2 from shallow wells near the Salton Sea.

Thermal gradients and maturity levels vary throughout the basin. In cooler areas, conditions may favor
generation and expulsion of natural gas. However, Colorado River sediments apparently lack hydrocarbon source
material. Analyses of deep-well cuttings show small amounts (< 0.5 wt%) of total organic carbon (TOC). The only
potential source rocks noted in the geologic literature have been minute coal fragments: Nehring and D’Amore
(1981, 1984) reported dispersed lignite particles in deltaic sediments from a deep well (Prian #1) near Cerro Pietro.
This coaly material may possibly generate the small amounts of hydrocarbon gases found in Cerro Pietro geothermal
wells. Published lithology logs and formation descriptions include no coal beds or swamp environments in the
sedimentary section, so the origin, extent and depositional trend of the carbonaceous units remain unknown. The
lignite fragments in the Prian #1 well may represent allocthonous deposition of Cretaceous coal eroded from the
Colorado Plateau.

Vitrinite reflectance (Ro) measurements for several areas in the Salton Trough indicate high thermal maturation.
Barker (1996b) reported an Ro of 3% at 13,400 ft in the Chevron Wilson #1 well (20-T14S-R15E). Drilled within a
relatively cool part of the basin, this well had a temperature gradient of only 60 ° C/km.

Figure 104 shows a plot of vitrinite reflectance versus depth for several wells at the Cerro Prieto geothermal
field (Barker and Elders, 1981). The graph displays considerable variability in vitrinite gradients that probably
depends on proximity to a “hot spot.”  Some wells show Ro ranges from 0.7 to 1.0% at depths as shallow as 800 to
3,300 ft. In borehole M-84, vitrinite reflectance ranges from 0.12% at 790 ft  to 4.1% at 5,580 ft (Barker and Elders,
1981). These data indicate that thermal maturation levels have reached or exceeded the wet-gas floor and dry-gas
preservation limit (Dow, 1977) at very shallow depths in the hot spots.

Although under-explored parts of the basin may contain undiscovered coal seams or lacustrine shale beds with
high organic content, the data apparently indicate “normal” pressures at depth throughout the section, and
observations lead to the conclusion that water has entirely saturated potential reservoir rocks. Thus, all the data
indicate the Salton Trough probably contains no basin-centered gas accumulation.



KEY ACCUMULATION PARAMETERS

Identification Pacific Coast Province, Salton Trough, Imperial Valley, normally pressured, 
hydrogeothermal basin.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Remote possibilities in the lacustrine shale beds (Miocene through Recent) 
and dispersed coaly beds (Colorado River Recent sediments)

b. Total Organic Carbons 
(TOCs)

0.09% (Palm Spring Formation (Plio-Pleistocene)), 0.2% (Pliocene lacustrine 
and deltaic sediments), and 15 samples from the Cal State 2-14 (14-T11S-
R13E) well were less than 0.4 % TOC (Barker and Elders, 1981; Barker, 
1996b).

c. Thermal maturity Ro = 0.7 to 4.1 at depths from 3280-5576 ft (Barker and Elders, 1981).

d. Oil or gas prone Gas (CO2 is common; very minor concentrations of hydrocarbon gases).

e. Overall basin maturity Very high level of maturation due to post-Miocene hydrogeothermal activity.

f. Age and lithologies Miocene to Recent breccias, turbidites, deltaic and lacustrine deposits

g. Rock extent/quality Source rocks generally lacking, highly variable levels of induration 
throughout the stratigraphic section due to hydrothermal activity.

h. Potential reservoirs Colorado River deltaic and lacustrine (Recent) sediments.

i. Major traps/seals If not compromised by faulting, hydrothermal mineralization throughout the 
stratigraphic section, Pliocene lacustrine deposits, and Miocene Fish Creek 
gypsum and anhydrites.

j. Petroleum 
generation/migration 
models

In-situ generation of dispersed coally material within the Colorado River 
deltaic sediments is a remote possibility; other source rocks are lacking.

k. Depth ranges Sediment fill of up to 20,000 ft.

l. Pressure gradients Wells drilled at the Salton Sea and Cerro Prieto geothermal fields had 
gradients that ranged from 0.40 to 0.42 psi per ft (Muffler and White, 1969; 
Bermejo et al., 1981).



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

none

b. Cumulative production none

Economic 
Characteristics:

a. Inert gas content High CO2 (80 to 90 wt%).

b. Recovery

c. Pipeline infrastructure poor

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Poorly consolidated sediments, except in the vicinity of geothermal 
anomalies where hydrothermal fluids have effectively cemented thousands of 
feet of section.

f. Porosity/completion 
problems

Sediments deposited are mineralogically complex with a variety of clays; 
also problematic are well indurated rocks in geothermal areas.

g. Permeability

h. Porosity
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SAN RAFAEL SWELL (DAKOTA FORMATION)

GEOLOGIC SETTING

The San Rafael Swell is an uplift located on the northwest side of the Paradox Basin in north-central Utah
(Figure 105). Two sub-parallel rows of southward-facing cliffs, the Book Cliffs and the Roan Cliffs, rim the Swell
on the northeast, and the high-plateau volcanic area near Richfield forms the southwest border. Rocks in the San
Rafael Swell range in age from Permian through Cretaceous, with Eocene strata exposed to the north as the Swell
merges with the south limb of the Uinta Basin (Figure 106). Maximum thickness of Phanerozoic sediments on the
Swell ranges from 5,000 to 8,000 feet.

The Lower Cretaceous in this area includes the Cedar Mountain Formation (Albian), unconformably overlain by
the Dakota Sandstone (Cenomanian), which is in turn unconformably overlain by the Tununk Member of the
Mancos Shale (Turonian) (Young, 1960). The Dakota Sandstone and Cedar Mountain Formation comprise the
Dakota Group. Spieker (1946) designated the entire Cretaceous interval as the Indianola Group (Figure 107).

The Dakota Group rocks derive from formations uplifted and thrusted eastward during the Sevier orogeny
(Lawton, 1983, 1985; Peterson, 1994a). Deposition occurred along the western shore of a Cretaceous seaway that
traversed the continent from Mexico to the Arctic. Dakota sediments uncomformably onlap the Morrison Formation
on the west and grade eastward into a marine shale (Figure 107) (McGookey et al., 1972). The Dakota Group
represents four major stratigraphic sequences which reflect regional base-level fluctuations caused by both tectonics
and eustatic sea level changes. Multiple unconformities and smaller-scale sequences occur within each megasequence,
in response to variations in sediment supply, climatic fluctuations and local structural developments (Dolson and
Muller, 1994). Elder and Kirkland (1964) present a relative sea-level curve and ammonite zonation for the
Cenomanian of central Utah.

Peterson (1969) subdivided the Dakota Formation into three lithic units: a lower conglomeratic sandstone and
shale unit from 0 to 65 ft thick; a middle carbonaceous shale, coal and sandstone unit from 0 to 80 ft thick; and an
upper marine sandstone unit from 0 to 85 ft thick. The upper unit contains a large and diverse marine molluscan
faunal assemblage, consisting mostly of bivalves and ammonites (Eaton et al., 1990). Sandstones in the Dakota
generally thicken and coarsen westward.

The San Rafael Swell resulted from basement uplift and thin-skinned deformation, where the eastward-verging
Sevier orogenic belt impinged on the nearly horizontal strata of the Colorado Plateau. Exposures on the west flank
of the Swell show detachment folds occur above a décollement in the Jurassic Carmel Formation, where a fold train
lies above a thin gypsum layer. These folds developed in response to regional horizontal compression on the west
limb of the Swell during Paleocene time (Royse, 1996). This décollement represents  part of a stratigraphically-
controlled regional detachment that occupies the east flank of the Jurassic evaporite basin.

The Swell first became active as a region of reduced subsidence before it developed topographic relief. It began to
grow in mid-Cretaceous time (about 90 Ma) as a low-relief structural welt in the Rocky Mountain foreland (Perry
and Flores, 1997). Giuseppe and Heller (1996) compared sections of the Price River Formation (Campanian) to the
laterally equivalent Farrer Formation and found variations across the swell crest, demonstrating tectonic uplift in Late
Cretaceous time.
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HYDROCARBON POTENTIAL

In central Utah very little exploration has occurred  for Permian, Triassic and Cretaceous reservoirs. The flanks
of the north end of the San Rafael Swell and the Circle Cliffs uplift represent prospective areas for both structural
and stratigraphic traps (Sprinkel et al., 1997). Known petroleum resources of the area include gas in the Triassic
Moenkopi Formation, the Cretaceous Ferron and Dakota Sandstones, and the Eocene Wasatch and Green River
Formations (Figure 106). The Dakota Sandstone and Moenkopi Formation also contain small quantities of oil. Tar
sands are common in the Moenkopi, and oil shale occurs in the Green River Formation. Weiss et al. (1990), and
Bishop and Tripp (1993) reported extraction of some tar sands for local use, but the oil shale remains unexploited.

Dakota Group rocks have yielded more than 2.0 BBOE of hydrocarbons, mostly from stratigraphic traps
controlled by paleotopography (Dolson and Muller, 1994). The Moenkopi has produced significant quantities of oil
from the Grassy Trail Creek field in the Swell.

Nine gas fields exist in the area, in addition to Farnham Dome (carbon dioxide production) and Woodside Dome
(helium reserves) (Production table, Key Accumulation Parameters). Two fields, the Flat Canyon and Joe’s Valley,
have produced natural gas from Dakota Formation reservoirs in the Wasatch Plateau adjacent to the San Rafael
Swell. Dakota production may also have occurred  from the abandoned Miller Creek field near Price, Utah; this field
is located on the northwest plunge of the Swell.

EVIDENCE FOR BASIN-CENTERED GAS

The Dakota Sandstone in the area north of the San Rafael swell exhibits some characteristics indicative of a
basin centered gas accumulation; however, overall evidence suggests that it probably is not. The Dakota contains
coal and carbonaceous shale, which are good source rocks for gas. Additionally, the thermal maturity of these source
rocks is adequate for thermogenic gas generation, especially where the Dakota becomes more deeply buried in the
Uinta-Piceance basin. Factors that do not favor the presence of a basin-centered accumulation include the following:

1) most fields are associated with structures, and

2) the limited production in the area looks to be conventional (i.e. reservoirs contain gas-water contacts).



KEY ACCUMULATION PARAMETERS

Identification Provinces: Paradox Basin, and Uinta-Piceance Basin. Plays: Cretaceous 
Dakota to Jurassic; Wasatch Plateau-Emery (unconventional-coal bed gas); 
Permo-Triassic Unconformity; and

Cretaceous Sandstones; Accumulation: North end, San Rafael Swell
Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Organic-rich mudstones in the Mancos Shale and Cretaceous-age coals 
(Dakota Group, Ferron and Mesaverde formations) are the source rocks.  The 
Ferron and Dakota sandstones are possible reservoirs for gas.  Organic-rich

shale of the the Permian Phosphoria and/or Park City formations may be a 
source of oil (Meissner and Clayton, 1984).

b. Total Organic Carbons 
(TOCs)

c. Thermal maturity Type III Kerogen. Mean Ro ranged from 0.50 to 0.65 for coal and shale in the 
Dakota Sandstone (Nuccio and Johnson, 1988).

d. Oil or gas prone

e. Overall basin maturity

f. Age and lithologies Permian through Cretaceous in the basin area; Eocene strata exposed to north 
where San Rafael Swell merges with south limb of Uinta Basin. 
Conglomeratic sandstone, shale, carbonaceous shales, coal, and fossiliferous 
marine sandstones.

g. Rock extent/quality possibly basin-wide source and reservoir-rock distribution; flanks of San 
Rafael Swell and Circle Cliffs uplift are prospective areas for structural and 
stratigraphic traps (Sprinkel et al., 1997).

h. Potential reservoirs Triassic Moenkopi Formation, Cretaceous Ferron and Dakota Sandstones, 
and Eocene Wasatch and Green River Formations.

i. Major traps/seals Structurally controlled (simple doubly-plunging folds and complexly faulted 
anticlines); probably stratigraphic, with discontinous sandstones in the 
Dakota and Ferron units.

j. Petroleum 
generation/migration 
models

Fractures in Jurassic Entrada Sandstone on the Swell acted as conduits for 
hydrocarbon migration, and both solid bitumen and live oil droplets occur in 
lamproite dikes and secondary calcite veins which now fill the fractures; a

discontinuous corridor of sub-parallel faults extends updip from these dikes 
towards a large tar sand deposit southeast (Hulen et al., 1998).

k. Depth ranges

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Farnham Dome, Gordon Creek, Grassy Trail Creek, South Last Chance, 
Woodside Dome, Flat Canyon, Joe's Valley, Drunkards Wash, Peters Point, 
and Stone Cabin

b. Cumulative production See table below.  As of 1998, the status for wells/fields are as follows: 
Farnham Dome, 12-15S-11E, Navajo Ss-abandoned; Gordon Creek, 8-14S-
7E, Permo-Triassic rx-shut in; Woodside Dome, T19S, R13E, Permian

Kaibab-shut in; Last Chance, South, T26S, R7E, Permo-Triassic rx-shut in; 
and Joe's Valley, T15S, R6E, Ferron Ss-abandoned, Dakota Grp-abandoned. 
Stone Cabin, Peters Point, Drunkards Wash, Grass Trail Creek, and Flat

Canyon were producing in 1998.

         *  Production to 1993 (Chidsey, 1991; Hill and Bereskin, 1993).

Field County Area
Producing
Formation

       Cumulative   

Oil (bbl)

    Production*   

   Gas (bcf)

Stone Cabin Carbon, Duschesne Uinta Basin Wasatch Fm 23 0.72

Peters Point Carbon Uinta Basin Wasatch Fm 142,852 0.005

Farnham Dome. Carbon San Rafael Swell Navajo Ss 0 2.5

Gordon Creek Carbon Wasatch Plateau Permo-Triassic 0 0

Drunkards Wash Carbon San Rafael Swell Ferron coals - 66

Grassy Trail Cr. Carbon, Emery San Rafael Swell Moenkopi Fm 540,000 0.145

Woodside Dome Emery San Rafael Swell Permian Kaibab 0 0

Last Chance, So. Emery Wasatch Plateau Permo-Triassic 0 0

Flat Canyon Emery Wasatch Plateau Dakota Ss 317 1.44

Joe’s Valley Sanpete Wasatch Plateau Ferron Ss 0 2.63

“ “ “ Dakota Grp 0 2.65



Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure

d. Exploration maturity 
relative to other basins

e. Sediment consolidation

f. Porosity/completion 
problems

g. Permeability

h. Porosity
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Figure 105. Location of the San Rafael Swell, Utah, showing approximate limits of Sevier orogenic belt and
Wasatch Plateau.  After Peterson (1994b), Sprinkel (1994), and Willis (1999).
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SANTA MARIA BASIN (MONTEREY FORMATION)

GEOLOGIC SETTING

The Santa Maria basin is a triangular depression in the California coastal belt northwest of Los Angeles (Figure
108). The basin is 150 miles long and 10-50 miles wide and covers an area of 3000 square miles. The basin
boundaries include the Santa Lucia and San Rafael Mountains on the north and northeast, respectively, the Santa
Ynez Mountains on the south, and the Pacific Ocean on the west (Crawford, 1970; Dunham et al., 1991).

The basin originated with Andean-type subduction of North America’s western margin during the late Mesozoic
and middle Tertiary. Subduction progressed until the margin reached the East Pacific Rise at 30 Ma, after which the
relative motion changed to right-slip displacement. The Neogene basins of western California developed in response
to right-lateral shearing of the continental margin (Dunham et al., 1991).

The geotectonic history of the Santa Maria basin includes the following stages:

1) Late Cretaceous to early Miocene: right-slip movement along the Santa Maria River fault system and the
Santa Ynez River fault to the south triggered initial subsidence and rifting of the basin (Dunham et al.,
1991). Tectonic spreading may have formed pull-apart structures about 20-28 Ma (Hall, 1981). The initial
rifting and basin subsidence deposited the coarse alluvial conglomerates of the Late Oligocene-Early
Miocene Lospe Formation.

2) Miocene to Pliocene: continued wrench faulting resulted in rapid subsidence and development of a deep
marine basin. Climatic and oceanographic changes produced favorable conditions for high plankton
productivity in surface waters above the deep basin. The basin filled with organic-rich pelagic and
hemipelagic sediments of the Monterey and Sisquoc Formations (Figure 109). Uplift of the Santa Ynez and
San Rafael Mountains began during late Pliocene and contributed non-marine sediments.

3) Post-Miocene: tectonic style changed from right-slip motion to northeast-southwest-directed compression
and resulted in thrust faulting. Reverse faults border or cut nearly every field in the Santa Maria Basin
(Figure 110). These compressional structures formed some of the major oil-producing anticlines in the
region (Dunham et al., 1991). The thickness of the deformed basin fill probably approaches 15,000 ft in the
footwalls of reverse fault systems (Figure 110).

HYDROCARBON PRODUCTION

The Santa Maria basin is one of the oldest oil-producing regions in California. Exploratory drilling began in the
late 1890s near several oil seeps in the area. By 1908, major oil discoveries included the Orcutt, Lompoc, and Cat
Canyon fields (Figure 108). The offshore Santa Maria basin has seen exploration since the 1950s; major offshore
discoveries occurred in the 1980s and include the Point Pedernales, San Miguel, Bonito, and Sword fields. In 1981
Chevron discovered the Point Arguello field, the largest U.S. oil find since Alaska’s Prudhoe Bay; Point Arguello
estimated ultimate recovery (EUR) has exceeded 300 MMBO.

Offshore fields produce heavy oil, with gravities ranging from less than 5 to as light as 40° API (Dunham et al.,
1991). Onshore basin oils have low gravities ranging from 16 to 27° API, and high sulfur and nitrogen content.
Natural gas comprises only a small portion of the hydrocarbons. The gas occurs as solution gas or, rarely, as gas
caps (Dryden et al., 1965; Dunham et al., 1991).

Net reservoir thickness averages 1000 ft and ranges from 50 to 3,000 ft. Porosities range from 15 to 20%, and
permeabilities reach 1 darcy (Milton et al., 1996). Anticlines that formed above major reverse faults have trapped
most oil and gas accumulation within the basin. To date, only one significant nonstructural field has a trap formed
by a stratigraphic pinchout.
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Several formations within the basin have yielded oil, but the naturally fractured siliceous shales and cherts of the
Monterey Formation (Figure 109) have accounted for the greatest production. The Monterey ranges from 0 to 3000 ft
thick and averages 1,000 ft (Figure 110) (Milton et al., 1996). The formation constitutes both a source rock and a
reservoir. Organic-rich zones occur as 1.5 to 6.5 ft thick shale layers, interbedded with thin dolomite beds in the
lower and middle members of the formation. Kerogen content commonly exceeds 5% and locally exceeds 18% within
some shale beds. However, though interbedded with fractured reservoir rocks, those same shales may not have
generated the oil. Instead, oil may have migrated a considerable distance up dip along fractures before becoming
structurally trapped.

Monterey organic matter is mostly amorphous algal material which matures at a significantly faster rate than
structured organic debris such as vitrinite. Thus, vitrinite reflectance has proven unreliable as a maturity indicator.
Monterey oils may have originated at unusually low temperatures because of the unusual formation chemistry. Rapid
basin subsidence may have accelerated the entry of Monterey source rocks into the oil generation zone. In many areas
of the basin, the Monterey Formation lies at depths where temperatures exceed 120 °C which is within the classic oil
window (Dunham et al., 1991).

EVIDENCE FOR BASIN-CENTERED GAS

Santa Maria basin source rocks contain mostly Type II oil-prone organic matter. To generate significant gas
from Type II kerogens, the oil requires  thermal cracking through deep burial. The window for oil-to-gas conversion
occurs at a Tmax of 460 °F, and vitrinite reflectance (Ro) must exceed 1.2%. Unfortunately, vitrinite reflectance is
not a reliable indicator for the Monterey Formation.

Extrapolation of French's geothermal gradient for three fields in the Santa Maria basin indicates the deepest part
of the basin (12,000-15,000 ft) has sufficient temperature and burial depth for gas generation and/or conversion from
Type II kerogen (Magoon and Isaacs, 1983). This analysis assumes removal of 3000 ft of overburden. As the
thickness of fill approaches 15,000 ft (Magoon and Isaacs, 1983; Tennyson, 1996), only the deepest part of the basin
may be mature enough for basin-centered gas accumulation.



KEY ACCUMULATION PARAMETERS

Identification Pacific Coast- Santa Maria basin, southern California. fractured chert and 
dolomite and cherty shale of middle to late Miocene Monterey formation

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Monterey formation; source-organic rich shales; reservoir-fractured brittle 
rocks (chert and carbonate).

b. Total Organic Carbons 
(TOCs)

17% (average 5%)

c. Thermal maturity Type II Kerogen; Ro is an unreliable indicator here; maturity established by 
depth of burial plots.

d. Oil or gas prone Both heavy oil (12 to 35 degrees API) and gas prone (associated gas only).

e. Overall basin maturity Considered marginally mature to mature; immature in some places.

f. Age and lithologies Fractured chert and cherty shale of middle to late Miocene Monterey 
Formation.

g. Rock extent/quality Basin-wide source and reservoir-rock distribution.

h. Potential reservoirs Fractured Monterey Formation.

i. Major traps/seals Producing fields-structural (nearly every field in the basin is bounded or cut 
by reverse faults); stratigraphic pinchouts.

j. Petroleum 
generation/migration 
models

Migration began in the late Miocene and likely continues to the present in 
tectonically subsiding regions of the basin where immature Monterey shales 
are only now being carried into the oil window.

k. Depth ranges 1,300 to 10,000 ft (producing fields); 12,000-15,000 ft in the basin center.

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Orcutt, Lompoc, Casmalia, Cat Canyon, Santa Maria Valley Field, Point 
Arguello, Point Pedernales, and San Miguel

b. Cumulative production Orcutt (disc. 1901, >180 MMBO); Lompoc (>47 MMBO); Casmalia (50 
MMBO); Cat Canyon (298 MMBO, 178 BCFG); Santa Maria Valley Field 
(184 MMBO);  Point Arguello (disc 1981, 123 MMBO); Point Pedernales

(disc. 1983, 20,000 BBO/day); San Miguel (disc. 1983, 3780 BBO/day)
Economic 
Characteristics:

a. Inert gas content CO2: 20%-25% (Dryden et al., 1965); sulfur; nitrogen

b. Recovery Low. Continuous-type accumulations are characterized by low individual 
well-production rates and small well-drainage area. Directional/horizontal 
wells are being drilled to reduce the number of well sites.

c. Pipeline infrastructure Very good. There are numerous gas lines in the basin.

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Consolidation/porosity reduction occurs with depth of burial .

f. Porosity/completion 
problems

No problems; fractured reservoirs; porosity = 15-20%.

g. Permeability

h. Porosity
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Figure 110. South-north cross section through the Santa Maria Basin.  The depth to present-day temperature of 165° F (74° C) comes from the geothermal
gradients for Lompoc, Orcutt and Santa Maria Valley oil fields.  Figure 108 shows the location of the cross section.  After Magoon and Isaacs (1983).
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SNAKE RIVER DOWNWARP, IDAHO

GEOLOGIC SETTING

The Snake River Downwarp is a generally east- to west-trending arcuate depression in southern Idaho and east-
central Oregon (Figure 111). The Snake River (Figure 112) traverses the entire length of the province. The area’s
boundaries include the Columbia Plateau to the northwest, the Idaho Batholith to the north, the Montana thrust belt
to the northeast, and the Yellowstone Plateau to the east. The Wyoming Overthrust Belt forms the southeastern
border, while the Basin and Range province marks the southern to western limits.

Until the Miocene, the downwarp existed as a relatively stable part of the Cordilleran miogeoclinal continental
shelf. Onset of rifting during the Miocene created the present interior rift basin (Warner, 1977), and included normal
block-faulting and left-lateral strike-slip faulting. At this time ancient Lake Bruneau formed and covered much of
southern Idaho and adjacent parts of Oregon and Washington. Lake Bruneau shrank in size as rifting progressed, and
by Pliocene time, a smaller remnant–Lake Idaho–occupied only the down-dropped central rift graben (Warner, 1977;
1980). The deepest part of Lake Bruneau was in the southwest part of the present basin, immediately north of the
Owyhee Mountains (Figure 112). During the Pliocene, rifting shifted the axis of Lake Bruneau’s structural basin 12
miles northward, and lowered the basin’s northern flank relative to the southern. This became the primary
depositional axis for Pliocene Lake Idaho, which expanded eastward almost to Wyoming (Figure 113).

Paleozoic rocks vary from 0 to 45,000 ft thick in the downwarp, and thicken to over 15,000 ft in the
surrounding area. Mesozoic strata thickness may reach 50,000 ft, but generally ranges from 15,000 to 30,000 ft in
the downwarp area (Warner, 1980). The Miocene Sucker Creek Formation includes up to 3,500 ft of Lake Bruneau
sediments (Figure 114). Lake Idaho deposits range to 9,000 ft in thickness and comprise the Poison Creek, Chalk
Hills and Glenns Ferry Formations of the Idaho Group  (Peterson, 1996). The thickest strata for both lakes occur in
the western parts of their depositional basins (Figure 115).

The downwarp area shows a high present-day geothermal gradient, probably resulting from emplacement of the
Cretaceous Idaho Batholith (Figure 115). Various events have subjected the area to high-heat flows: the Miocene
rifting and related extrusion of the Columbia Plateau Basalt and Owyhee Volcanics; and Pliocene to Recent extrusion
of the Snake River Basalt.

HYDROCARBON PRODUCTION

There is no existing or historical production in the area. Potential reservoirs include interbedded sands in the
Idaho Group and the Sucker Creek Formation. Fracture production is possible from nearly any rock type containing
an overpressured basin-centered accumulation.

EVIDENCE FOR BASIN-CENTERED GAS

Factors that may indicate a basin-centered gas accumulation include abundant gas shows, and some oil shows
from both water wells and hydrocarbon exploration wells. Warner (1980) and Peterson (1996) speculate that the
Cenozoic section in the Snake River Downwarp may total 30,000 ft thick. To date, some drilling has occurred in
horizons above 5,000 ft depth, but very little in the strata between 5,000 and 14,000 ft depth (Figure 112).
Sediments at all depths appear to contain some hydrocarbons, although Miocene to Pliocene lacustrine sediments are
most favorable for basin-centered accumulations. Because of the probable great depth and high thermal gradient in the
basin, the deeper areas will only generate gas and may actually be at the peak to past-peak generation stage,
depending on depth and location.



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountain Province;  Snake River Downwarp in Southern Idaho. 
Possible Cenozoic Basin Centered Gas.

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Lacustrine rocks, shale and mudstone of the Tertiary Pliocene Idaho Group 
and the Miocene Sucker Creek Fm (Wood, 1994).

b. Total Organic Carbons 
(TOCs)

In the Halbouty 1 J. N. James exploratory well (Figure 112), the 10 highest 
TOC samples ranged from 0.43 to 1.95% (Wood, 1994).

c. Thermal maturity Pliocene Idaho Group: immature for the depth range 1000 to 2100 ft;  Ro 
ranges from 0.2 to 0.7 (estimated from reported vitrinite colors) (Senftle and 
Landis, 1991); Rocks of probable Miocene age, below the seismic "Miocene

Volcanics acoustic basement," are mature and range from Ro 0.7 - 1.3 at 
3840 ft to 2.0 at 8700 ft depth (estimated from an orange-brown to dark 
brown vitrinite color) (Senftle and Landis, 1991). This is in the wet gas to 

dry gas zone. Untested strata, between 2100 ft and 3840 ft, may be within the 
oil generating window (Wood, 1994). Kerogen is primarily woody, with 
secondary amounts of herbaceous spores, pollen and inertinite. This strata

will be a good gas source and a poor oil source. Geothermal gradients in the 
Western Snake River Downwarp are high, ranging from 16.5 to 22° F per 
1000 ft (30 - 40° C) (Wood, 1994, p. 109).

d. Oil or gas prone Probably gas prone with associated gas liquids. Gas from a depth of 1979 ft 
in Oroco-Simplot 1 Virgil Johnson (Figure 112) indicated 93% methane, 3% 
ethane, and 4 % unknown; Btu was 1102 per cu ft (IHS Enery Group, 2000, 
PI/Dwights Plus™).

e. Overall basin maturity Probably mature; overmaturity may occur in Paleozoic strata at great depth.  
Mid-depth Mesozoic and early Cenozoic strata could possibly be overmature.

f. Age and lithologies Clastic and lacustrine strata of the Pliocene Idaho Group and Miocene 
Sucker Creek Formation.

g. Rock extent/quality Potentially large extent of possible interbedded lacustrine source and clastic 
reservoir strata.

h. Potential reservoirs Interbedded sands in the Idaho Group and Sucker Creek Formation

i. Major traps/seals Possibility of both structural and stratigraphic types

j. Petroleum 
generation/migration 
models

Weimer's (1996) “Cooking Pot” model, where generated hydrocarbons are 
expelled into the surrounding reservoir rocks.

k. Depth ranges Biogenic gas to 5000 ft depth. Speculative basin-centered gas from 5000 to 
25,000-plus ft (Warner, 1980)



l. Pressure gradients 0.45 psi/ft (±0.06 psi/ft) for shallow objectives.  Deeper objectives are 
possibly overpressured.

Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

none

b. Cumulative production none

Economic 
Characteristics:

a. Inert gas content Less than 5%.

b. Recovery

c. Pipeline infrastructure A single 24-inch pipeline passes through the area paralleling Interstate 84. 
Several small lateral lines serve the towns surrounding Boise, Idaho. A major 
trunk line runs from the southwest corner of Idaho to Reno, Nevada.

d. Exploration maturity 
relative to other basins

Immature.

e. Sediment consolidation Poorly consolidated rocks may exist in the shallower parts of the basin.

f. Porosity/completion 
problems

Low porosity and permeability may be a problem, at least in underpressured 
or normally pressured areas.

g. Permeability

h. Porosity
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Halbouty-Chevron 1 J. N. James
   Hydrocarbon exploration well; drilled in 1976.  SE 27, T4N R1W.  Total depth = 14,000 ft.  
   Total Organic Carbon range 0.43 to 1.95%.

Oroco-Simplot 1 Virgil Johnson
   Hydrocarbon exploration well; drilled in 1955.  SE 27, T8N R4W.  Total depth = 4,040 ft.
   Well suffered gas blowout at 1,979 ft depth.  
   Gas analysis:  1102 Btu/ft3, 93% methane, 3% ethane, 4% unknown.

Fault; U is upthrown side, D is downthrown side

Igneous rock
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Glenns Ferry Formation

This formation consists of a homogeneous mixture of light gray silty clay, containing beds of light 
siliceous volcanic ash and some sandstone.  In some areas it contains considerable basalt.

The formation represents the last stage of ancient Lake Idaho and the beginning of the Snake River
Basalts.

The sandstones of this formation are best developed in the central portion of the far western end of
the Snake River Plain.  Many shallow wells drilled in this formation have shown gas.

Chalk Hills Formation

Oolitic limestone 30-100 feet thick caps this formation.  It consists of interbedded silty ashy clay,
sandstone, and pure vitric ash.  Also contains some basalts and tuffs.  At least one algal reef is present
in the upper portion.  This is a lacustrine deposit containing beds rich in mollusc, diatom, ostracod, and
fish fossils.  The color of the entire formation is light gray, with the exception of a few ferruginous sands
and some basalts.  A white porcellanite bed forms the base of this formation.

Poison Creek Formation

A bright red crystalline volcanic ash (the Cherokee Ash) caps this formation.  This formation is
primarily volcanic, consisting of interbedded tuffs, ashes, volcanic sands, and a few basalts.  The color
is yellowish brown to greenish brown, and darker overall than the younger units above.  Fossils are
sparse.

Owyhee Rhyolite

This unit consists of a mix of rhyolite, dacite, latite, andesite, and a few basalt stringers.  Rhyolite
dominates, and it is brownish red to pink in the upper section, becoming more gray with depth.  A few
tuffs and ash beds are interbedded with the extrusive rocks.

Columbia River Basalts
(North and northwest part of downwarp)

Sucker Creek Formation

A mix of lacustrine, deltaic, and volcanic deposits.  The upper part consists largely of ashy, silty,
carbonaceous shale and siltstone.  It contains much diatomite and many giant fossils, and it is highly
lignitic.  The formation is very finely laminated.

Interbedded with the carbonaceous section are some very thick (50-100 feet) and extensive
quartzitic sandstones.  Ashes, tuffs, and porcellanite are common, and a few black organic shale beds
are present.  

Distinct marker beds occur at the following depths:
A green chloritic ash bed (Green Hornet Ash) at 7300 feet.
A white porcellanite bed (Snowbird Shale) at 7750 feet.
A bluish gray perlitic tuff at 8900 feet.

The lower half of the section is similar to the upper half, but contains more volcanic rocks.

Deep wells and drill stem tests have indicated good gas shows.

Jarbidge Rhyolite

A light to dark gray rhyolite with pink and greenish gray zones.  It contains some porcellanite, ash,
and tuff beds, and is locally rich in pyrite.  The lower part is highly altered in spots, becoming
porphyritic.

Meta-Rhyolite
Coarse porphyritic rhyolite with large quartz and feldspar phenocrysts.  It resembles plutonic rock.

Series Depth Lith. Description Thickness

Figure 114. Cenozoic stratigraphic column of the western Snake River Downwarp, Idaho.  After Warner (1981) and Wood (1994).
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SWEETGRASS ARCH (CENTRAL MONTANA)

GEOLOGIC SETTING

The Sweetgrass Arch is a gentle fold extending from northcentral Montana into southern Alberta, Canada
(Figure 116). The Montana Disturbed Belt forms the western border, the Bearpaw Mountains bound the arch on the
east, and the Little Belt Mountains closes off the arch to the south.

The Basin contains Paleozoic and Mesozoic sediments; but Ordovician, Silurian, Pennsylvanian and Permian
strata are absent because of erosion or non-deposition (Figures 117 and 118). An unconformity separates
Mississippian from Jurassic rocks in the area (Figure 117). Cretaceous rocks dominate the remaining sedimentary
section (Figure 118) (Peterson, 1966).

The late Cretaceous to early Tertiary Laramide orogeny gave the basin its present configuration.

HYDROCARBON PRODUCTION

Figure 116 shows a map of oil and gas fields in the Sweetgrass Arch area. The Cut Bank field is the largest and
represents a stratigraphic trap in the Cretaceous Cutbank Sandstone. Cumulative production to date exceeded 168
MBO and 322 BCFG. Blackleaf Canyon field produces from the Mississippian Sun River Dolomite within a
Disturbed Belt thrust sheet; to date the field has produced over 33,000 BO and more than 7 BCFG. The Two
Medicine Field has produced more than 25,000 BO from the Cone Member fractured shales in the Upper Cretaceous
Marias River Formation, and more than 11,000 BO and 274 BCFG from the Sun River Dolomite.

The source rock for most fields in the area is the Devonian-Mississippian Bakken Shale. Although Bakken oil
and gas generation occurred at great depth in the Alberta Basin (north of the Sweetgrass Arch), fracturing in the Sun
River Dolomite and across the Mississippian-Jurassic unconformity allowed extensive gas migration updip and
southward into the Cutbank Sandstone (Dolson et al., 1993).

EVIDENCE FOR BASIN-CENTERED GAS

Studies of potential source rocks in the Disturbed Belt indicate the Cone Member of the Marias River
Formation, and the Bakken Shale show the greatest potential for hydrocarbon generation (Clayton et al., 1982).
These rocks are generally immature east of the Disturbed Belt (Figure 119), although the Bakken may be mature to
post-mature where buried by thrust sheets (Clayton et al., 1982; Dolson et al., 1993). Vitrinite reflectance (Ro) for
the Bakken ranges from less than 0.5 to 1.5% (Dolson et al., 1993) (Figure 119). Potential reservoirs include
Devonian Nisku and Three Forks Formations, Jurassic Swift and Sawtooth Formations, and sandstones in the
Cretaceous Blackleaf and Kootenai Formations.

The Sweetgrass Arch has little apparent potential for continuous basin-centered gas accumulations.
Conventional accumulations in the area have produced large volumes of oil and gas, but the gas migrated from deeper
zones along the Disturbed Belt.



KEY ACCUMULATION PARAMETERS

Identification Rocky Mountain, Central Montana

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Potential sources: Bakken Shale and Cone Member, Marias River formation; 
potential reservoirs: Devonian Nisku and Three Forks formations, Jurassic 
Swift and Sawtooth Formations, and sandstones in the Cretaceous Blackleaf 
and Kootenai Formations.

b. Total Organic Carbons 
(TOCs)

Devonian Three Forks/Bakken avg = 0.975% (Dolson et al, 1993); 
Cretaceous Cone Member, Marias River Formation avg = 2.40% (Clayton et 
al., 1982).

c. Thermal maturity Bakken Shale Ro = <5% to 1.5% beneath thrusts of Montana Disturbed Belt. 
Cretaceous shales of Sweetgrass Arch to east edge of Disturbed Belt, Ro ≤ 
0.6% threshold (so Cretaceous Cone Shale is immature along the

Sweetgrass Arch) (Figure 119) (Dolson et al, 1993).
d. Oil or gas prone Bakken Fm source rocks are thermally immature throughout the productive 

portion of the Sweetgrass Arch (Dolson et al., 1993).

e. Overall basin maturity Mature only in deeper portion to north in Canada and beneath thrust plates of 
the Disturbed Belt along the western margin.

f. Age and lithologies

g. Rock extent/quality

h. Potential reservoirs

i. Major traps/seals

j. Petroleum 
generation/migration 
models

k. Depth ranges

l. Pressure gradients



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

b. Cumulative production

Economic 
Characteristics:

a. Inert gas content

b. Recovery

c. Pipeline infrastructure Good near conventional fields.

d. Exploration maturity 
relative to other basins

e. Sediment consolidation

f. Porosity/completion 
problems

g. Permeability

h. Porosity
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WASATCH PLATEAU

GEOLOGIC SETTING

The Wasatch Plateau is an 80 mi long by 25 mi wide uplift west of the San Rafael Swell in east-central Utah,
within parts of Sanpete, Sevier, Emery and Carbon Counties, and lies sandwiched between Sanpete Valley to the
west and Castle Valley to the east (Figures 120 and 121). Structural features west of the Plateau include the
Gunnison Plateau and Wasatch Monocline (Figure 121). The Wasatch Plateau forms part of the central Utah
transition zone, between the Colorado Plateau to the east and the Basin and Range province to the west.

The Plateau’s history begins with Cretaceous synorogenic deposition of clastic sediments in a foreland basin
east of the Cordillera. On the western periphery of the basin, local deposits of deltaic and paludal sediments alternated
with deepwater mudstones deposited during several transgressive cycles (Figure 122). Eastward thrusting and uplift
probably began during the late Jurassic-early Eocene Sevier Orogeny (Neuhauser, 1988). Diapiric movements and
extensional faulting occurred during the Cenozoic era. Figure 121 shows fault structure for the area.

Exposures of Quaternary alluvium, Tertiary sandstones and limestones, and Upper Cretaceous Mesaverde Group
sandstones, shales and coalbeds occur atop the Plateau. Figures 122 and 123 show the area’s stratigraphy.

HYDROCARBON PRODUCTION

Oil and gas production in the Wasatch Plateau occurs mostly from Cretaceous Ferron sandstones east of the
Joe’s Valley Graben and west of the Ferron outcrop (Tripp. 1996). The Cretaceous Dakota Group and Permian
Kaibab Formation have had some minor production as well. The fields along the Plateau have produced over 158
BCFG and 132 MBO since 1951.

On the eastern margin of the plateau, recent coalbed methane production from Ferron coals in Drunkards Wash
Field (discovered in 1992) has sparked renewed interest in the area (Lamarre and Burns, 1997). Cumulative production
including coalbed methane  exceeds 224 BCFG.

Production on the Wasatch Plateau has generally been from structural traps, probably enhanced by tectonic
fracturing (Tripp, 1990).

EVIDENCE FOR BASIN-CENTERED GAS

Not enough evidence exists to determine if an overpressure cell encompassing the Cretaceous rocks occurs at
deeper drilling depths within the plateau. Production does occur from gas fields along the eastern plateau margin, but
pressure gradients are very low (significant underpressure) and only range from 0.21 to 0.27 psi/ft. Also, the Ferron
field shows downdip water flows (recorded in Northwest Prod. Co. #1 Federal, NENE 29-19S-7E), which indicates
underpressuring and a probable gas-water contact at depth. Additionally, drillstem tests in the vicinity of the plateau
recovered water, indicating normal to underpressuring in the lower Cretaceous sediments. Most wells showing water
are in close proximity to known mapped faults (Tripp, 1989). The high degree of tectonism and associated fracturing
of the rocks may allow water to flow upward from the Paleozoic section or downward from Tertiary and Cretaceous
rocks along the fault zones. If a “gas kitchen” once existed in this area, faulting may have breached it.

Exploration the central part of the Plateau has been rare and many townships remain untested. However, in 1996
Cimarron Energy Corporation re-entered a 20,505 ft deep test well (Hanson Oil Corp.’s Maroni #1AX, 14-15S-3E);
Cimarron completed two sidetracks within Tununk Shale at depths of 11,772 and 11,840 ft. Cumulative production
through June of 1999 was 369 BO and 425 MCF for this undesignated field (Utah Div. of Oil, Gas and Mining,
1999). This significant show indicates a fractured shale play probably occurs on the Plateau.



KEY ACCUMULATION PARAMETERS

Identification Great Basin/Colorado Plateau, basin-centered gas play in deeper Cretaceous 
Rocks, Wasatch Plateau

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Tununk and Bluegate Shale members of Mancos Shale and shale of the 
Dakota Group; Ferron and Emery Sandstone Members of Mancos Shale; 
Morrison Sandstones

b. Total Organic Carbons 
(TOCs)

c. Thermal maturity Ro values for Ferron coals at Drunkards Wash Field (T14 to 15S, R9 to 10E) 
reportedly average 0.69% (Lamarre and Burns, 1997). Blackhawk coals from 
mines in the Wasatch Plateau (T12 to 25S, R1 to 10E) (Bodily et al.,

1991) are high volatile bituminous (HVBc) in rank; this would correlatewith 
an Ro of 0.60 – 0.78%. Vitrinite reflectance data for coals within the 
sandstone member in the Emery Coal Field (T14S to 22S, R6 to 9E) range

from 0.52 to 0.63%. Other coals within the field have measured values up to 
0.74% (Hucka et al., 1997); these values are probably too low for a basin-
centered gas accumulation.

d. Oil or gas prone Primarily gas prone, type III and type II kerogens.

e. Overall basin maturity Fair to moderate. The extreme western edge of the plateau may be immature.

f. Age and lithologies Cretaceous shales, coals, delta plain and alluvial sandstones.  Dakota 
sandstone is conglomeratic.

g. Rock extent/quality The Ferron and Emery extend over plateau.  Sparse drilling of Dakota and 
Morrison renders the regional extent unknown. Tununk and Bluegate Shales 
are regionally extensive.  Individual Ferron coals are laterally

discontinuous.
h. Potential reservoirs Best reservoir rock occurs within channel facies.

i. Major traps/seals Mostly structural with some stratigraphic. The Cretaceous Tununk Shale 
separating the Ferron and Dakota Sandstones and the Bluegate Shale above 
and below the Emery and Ferron act as seals. Interbedded shales within

the sandstones may form seals.
j. Petroleum 

generation/migration 
models

In-situ generation and long distance migration. Geothermal gradient ranges 
from 23 to 29° C per km.

k. Depth ranges 8,500 to 12,000 ft



l. Pressure gradients Subnormal pressure gradients range from .21 to .27 psi/ft.  Some drillstem 
tests recovered water, indicating normal to underpressure in western portions 
of the plateau. Insufficient data exists to determine if an overpressure cell

in the Cretaceous rocks exists at deeper drilling depths within the plateau.
Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

Clear Creek (Ferron Ss), Drunkards Wash (Ferron coals), Flat Canyon  
(Ferron and Dakota ss), and Ferron fields (Ferron Ss). Joe's Valley fields are 
discussed in the San Rafael Swell section of this report.

b. Cumulative production Production has come from fields in faulted anticlinal structures along the east 
flank of the plateau. Clear Creek: 114.4 BCF; Drunkards Wash: 66 BCF; Flat 
Canyon: 1.4 BCF and 317 bbls; and Ferron: 10.2 BCF and 38,770 bbls 
(Tripp, 1991a, 1991b; 1993a).

Economic 
Characteristics:

a. Inert gas content Not a problem. The Ferron gas is 90-98% methane with a Btu range from 
990-1129. Flat Canyon Field Dakota gas is 1107 Btu with a methane content 
of 91% (Tripp, 1991b, 1993c). Ferron coalbed methane had a Btu of 

987-1000 with methane concentrations from 95.8-98.3% and carbon dioxide 
contents of 0.7-0.30% (Lamarre and Burns, 1997). Tests of Paleozoic rocks 
on the Gordon Anticline, located east of the Plateau, have encountered CO2

from the Moenkopi Formation and the Coconino sandstone (Tripp, 1990).
b. Recovery low

c. Pipeline infrastructure Limited.

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Well indurated.

f. Porosity/completion 
problems

Formation damage due to swelling clays may reduce or prevent production if 
appropriate drilling and completion fluids are not utilized.

g. Permeability Ferron permeability ranges from .05 to .14 md. Permeability for the Dakota, 
Morrison and Emery are unknown.

h. Porosity Ferron porosity ranges from 8 to 17%; Dakota porosity at Flat Canyon Field 
averages 4% (Tripp, 1989; 1991a; 1993b; 1993c).
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WESTERN WASHINGTON (WILLAMETTE-PUGET SOUND TROUGH)

GEOLOGIC SETTING

The Willamette-Puget Sound trough extends south from Vancouver Island in British Columbia 490 mi to the
Klamath Mountains in southwestern Oregon (Figure 124) (Johnson et al., 1997; Johnson and Tennyson, 1996). In
northern Washington, the Olympic Mountains interrupt this general trend . The Cascade Range forms the eastern
boundary. The trough extends 50 to 140 mi offshore to an approximate depth of 3,300 ft on the continental shelf
(Armentrout and Suek, 1985). Within the trough are the Tyee, South Willamette, North Willamette, Nehelem, and
Seattle basins. West of the main part of the trough and adjacent to the Pacific coastline are four subbasins: Coos
Bay, Newport, Astoria, and Willapa (Armentrout and Suek, 1985; Johnson et al., 1997; and Johnson and Tennyson,
1996).

Around the northern, northeastern and southern margins, accreted terranes of Mesozoic sedimentary, volcanic and
metamorphic rocks crop out and may underlie the eastern part of the trough (Johnson et al., 1997; Johnson and
Tennyson, 1996). Up to 20,000 feet of Cenozoic forearc sediments  overlie pre-Tertiary igneous and metamorphic
basement. Figure 125 shows the stratigraphy for various play areas in western Washington. Depositional
environments included fluvial, fan-delta, delta, shallow-marine, continental-slope and submarine fan (Johnson et al.,
1997; Johnson and Tennyson, 1996).

Oligocene to Pliocene uplift occurred simultaneously with subsidence of local depositional areas. Late Miocene
basalt flows flooded the Columbia River and northern Willamette Valleys, and associated intrusive activity occurred
concurrently. The Columbia River deposited deltaic and shallow-marine sediments in southwestern Washington and
northwestern Oregon (Astoria and Montesano Formations) from Miocene to Pliocene time (Figure 125). Subduction
along the continental margin during the Eocene caused extensive folding, faulting, uplift and subsidence (Johnson et
al., 1997; Johnson and Tennyson, 1996).

Conventional sandstone reservoir candidates include the shallow marine Spencer and Cowlitz Formations, the
deltaic to submarine fan Tyee Formation, the fluvial Chuckanut Formation, and the deltaic Puget Group.

HYDROCARBON PRODUCTION

Many oil and gas seeps occur along the Washington coast, and hydrocarbon exploration began in 1881. More
than 500 wells have been drilled in the Pacific Northwest, but most are less than 5,000 feet deep. The only
commercially productive hydrocarbon reservoir in the Willamette-Puget Sound trough is Mist gas field, a faulted,
structural trap located northwest of Portland, Oregon (Armentrout and Suek, 1985) (Figure 124). Since its discovery
in 1979, Mist field has produced over 70 BCFG from sandstones in the Eocene Cowlitz Formation.

Before discovery of the Mist gas field, the only hydrocarbon production in the region came from the Bellingham-
Watcom County coal fields, the Rattlesnake Hills field near Yakima in the Columbia Plateau, and the Grays Harbor-
Ocean City field, which to date has produced about 12,000 BO plus some associated gas (McFarland, 1981;
Armentrout and Suek, 1985) (Figure 124).
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EVIDENCE FOR BASIN-CENTERED GAS

In the northern Willamette basin, the lower Cowlitz Formation strata entered the oil-generating window about
33 Ma (Armentrout and Suek, 1985). Upper Cowlitz rocks entered the generation window at 3 Ma. Present-day
geothermal gradients average 15 °F per 1,000 ft; thus, present-day reservoir temperatures should support gas
generation at depths exceeding 7,000 ft. This depth is slightly shallower than the 8,000 ft depth of the overpressured
envelope. Favorable parameters exist elsewhere in the trough that suggest in-situ gas generation is taking place.

Eocene coals and carbonaceous shales are potential gas-prone source rocks. Total organic carbon (TOC) content
in the Willamette basin varies from 0.65% to 7.22% for marine shales and siltstones of the Cowlitz Formation;
interbedded coals have up to 55% TOC (Johnson and Tennyson, 1996; Johnson et al., 1997). Vitrinite reflectance
values range from 0.24 to 4.01 across the basin. High values result from contact metamorphism near igneous
intrusions along the Cascades. Projected temperatures within the hydrocarbon generation window range from 90 to
140 °C (Armentrout and Suek, 1985).

The shales encasing the Mist field reservoir are thermally immature, with Ro values less than 0.4% (Armentrout
and Suek, 1985). The gas within the reservoir probably generated deep in the basin and migrated updip into the
shallow structural trap.



KEY ACCUMULATION PARAMETERS

Identification Western Washington Province, Willamette-Puget Sound Trough, basin-
centered gas play

Geologic 
Characterization of 
Accumulation:

a. Source/reservoir Interval includes Eocene Cowlitz, Puget Group, Raging River, Crescent 
formations and equivalents.

b. Total Organic Carbons 
(TOCs)

Range from 0.5 to 7.22% in the middle to upper Eocene marine mudstones in 
the conventional Cowlitz-Spencer gas play area of the Southern Puget 
lowlands (Johnson et al., 1997).  Coals show up to 55% TOCs in the play 
area (Walsh and Lingley, 1991).

c. Thermal maturity Ro 0.24 - 4.01 (Armentrout and Suek, 1985; Walsh and Lingley, 1991)

d. Oil or gas prone Gas prone; almost exclusively type III kerogens.

e. Overall basin maturity Maturation levels are moderate (Ro ranges from 0.24 to 4.01) and increase 
east of the trough toward the crest of the Cascade Range.

f. Age and lithologies Eocene arkosic sands, coals, siltstones and shales.

g. Rock extent/quality Probable basin-wide source and reservoir-rock distribution. Rock quality is 
unknown except from a few wells and from outcrops around basin margins. 
Expected reservoir quality varies depending on clay content, zeolite

alteration, and interbedded shales and coals.
h. Potential reservoirs Gas-bearing reservoirs occur in Eocene or possibly older rocks (Johnson et 

al., 1997); very few conventional reservoirs exist; structurally trapped Mist 
field in northern Oregon has produced more than 70 BCFG.

i. Major traps/seals Interbedded Eocene-age shales, silststones and coals; diagenetic barriers 
might also be expected within micaceous and arkosic sands.

j. Petroleum 
generation/migration 
models

Primarily in-situ generation, but fracture zones offer the possibility of long 
distance migration of gases from shales and coals. Hydrocarbon generation is 
probably ongoing at depths below 7,000 ft.  Low present-day geothermal

gradients occur with an estimated 12.5° F per 1000 ft (Armentrout and Suek, 
1985).

k. Depth ranges 8,000 to more than 13,000 ft.

l. Pressure gradients Overpressured intervals are referenced in Walsh and Lingley (1991) and 
Johnson et al. (1997).



Production and Drilling 
Characteristics:

a. Important 
fields/reservoirs

unknown

b. Cumulative production The only existing production comes from a conventional structural trap at the 
Mist field (discovered in 1979) that has produced 70 BCFG from Eocene 
Cowlitz Formation (Armentrout and Suek, 1985).

Economic 
Characteristics:

a. Inert gas content Gases from the Mist field contain from 2.7 to 5.3% nitrogen (Armentrout and 
Suek, 1985), with traces of CO2. Hydrocarbon composition exceeded 99.9% 
methane. Higher Btu and lower inerts content are expected for gases

thermally generated within the continuous accumulation.
b. Recovery Recoveries may vary depending upon permeability, porosity and depth; 

diagenetic alteration may increase with depth.

c. Pipeline infrastructure poor

d. Exploration maturity 
relative to other basins

e. Sediment consolidation Probably moderate to good.

f. Porosity/completion 
problems

Shales, clay and mica-rich arkosic sands have high alteration potential; 
possible swelling clays.  Migrating fines may be a problem and average 
porosities may be highly variable. Shales, siltstones and coals are 
interbedded with sands.

g. Permeability Permeability declines with depth (Walsh and Lingley, 1991)

h. Porosity Cowlitz reservoir strata in the Mist field area show porosities from 16 to 
41%. Porosity declines with depth (Walsh and Lingley, 1991)
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APPENDIX I:

PHASE II ABSTRACTS

Potential for a Basin-Center Gas Accumulation in the Albuquerque Basin, New Mexico

The potential that a basin-center or continuous-type gas accumulation is present in the Albuquerque Basin in
central New Mexico was investigated. The Albuquerque Basin is one of the many rift basins that make up the
Rio Grand Rift system, an area of active extension from Oligocene to recent time. The basin is significantly
different from other Rocky Mountain basins that contain basin-centered gas accumulation because it is actively
subsiding and is at near maximum burial and heating conditions at the present time. Burial reconstructions
suggest that Cretaceous-age source rocks began to generate gas in the deeper parts of the basin about 20 million
years ago and are still generating large amounts of gas. High mud weights are typically used while drilling the
Cretaceous interval in the deeper areas of the basin suggesting some degree of overpressuring. Gas shows are
commonly reported while drilling through the Cretaceous interval; however, attempts to complete gas wells in
the Cretaceous have resulted in sub-economic quantities of gas, primarily because of low permeability. Little
water has been reported. All of these characteristics suggest that a basin-center gas accumulation of some degree
is present in the Albuquerque Basin.

Is There a Basin-Center Gas Accumulation In the Deep Anadarko Basin?

Well data, formation test results and published studies of abnormal pressures, methane isotopes and thermal
maturity were reviewed to evaluate the possibility that a basin-center gas accumulation might exist within the
regionally overpressured Mississippian and Pennsylvanian-age Atoka, Morrow and Springer Groups or in the
Mississippian and Devonian-age Woodford Shale in the central Anadarko basin, Oklahoma.

The Woodford Shale is a laterally extensive, organic-rich source rock which has passed completely into the gas
generation window in the deepest parts of the basin, but it does not appear to have developed overpressures on a
regional scale. A review of drilling mud weights and pressure data indicate that the Woodford Shale-Hunton
Group interval has generally been drilled with 9 to 10.5 ppg mud and appears to be normally to subnormally
pressured throughout most of the central basin. The underlying Hunton Group contains high permeability zones
which frequently produce subnormally or normally pressured salt water. Hydrocarbons expelled from the
Woodford Shale may have migrated downward into the Hunton aquifer and then moved laterally into structural
and stratigraphic traps. Two isolated overpressured compartments were identified where high mud weights and
unusual casing designs were used for the Woodford section. These appear to be uplifted fault blocks where
structural juxtaposition of the Woodford Shale and overpressured Springer shales may have locally modified the
typical plumbing system. The Woodford Shale does not appear to fit the basin-center gas model on a regional
scale.

The Atoka-Morrow-Springer section has many characteristics of known basin-center gas accumulations,
including mature, gas-prone source rocks, temperatures greater than 200° F, severe overpressures, tight sandstone
reservoirs, and extensive gas production. However, formation test data and published descriptions of known gas
fields reveal numerous examples of gas-water contacts and water production within the overpressured section.
Most commercial gas accumulations have been found in traditional structural and/or stratigraphic traps, but
many of the known gas reservoirs are water-saturated below distinct gas-water contacts. The available porosity in
the reservoirs was apparently not fully charged with gas. Perhaps the source rocks were not rich enough, or
perhaps they cooled down and ceased gas expulsion too early, so that the porosity available in the numerous
sandstones was not completely gas-saturated.  Depending on current interpretations of just how much moveable
water is allowable in a ‘continuous-type’ gas accumulation, the overpressured Atoka-Morrow-Springer section
does not quite fit the basin-center gas model on a regional scale.
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Several reservoir zones within the deep Anadarko Basin may be completely gas-saturated on a local scale. Well
data and formation tests at North Broxton Field  (T. 6 N., R. 12 W., Caddo County, Oklahoma) and Elk City
Field (T. 10 N., R. 20 - 21 W., Washita and Beckham Counties, Oklahoma) indicate severe overpressures, high
temperatures, prolific gas production and almost no water production from the Springer section at depths of
approximately 18,500 to 20,500 ft. Further study of formation test results and detailed log analyses are
recommended to determine if the deep Springer section might contain a small-scale basin-center gas
accumulation.

Is There a Basin-Center Gas Accumulation in the Columbia Basin (Pasco Basin), Central
Washington?

Well data, vitrinite analyses and previous geologic literature were examined to determine if the sparsely drilled
Pasco basin in central Washington might contain a basin-center gas accumulation similar to those found in
several Rocky Mountain basins. The limited geologic data available to the public show that many pre-requisites
are present, including abnormal pressure gradients, thermally mature source rocks, high temperatures, abundant
shows of natural gas, and tight sandstone reservoirs. However the results of twenty formation tests conducted in
several deep exploration wells indicate that water-bearing zones have been encountered frequently. With the
exception of a 1,850 ft thick section in the Roslyn Formation in the Shell Yakima Mineral Co. No. 1-33 well
which might be gas-saturated, the test data indicate widespread occurences of gassy formation water, and several
zones which produced water at high rates (> 50 barrels of water per day). The sedimentary section does not
appear to be extensively gas-saturated.

The Pasco basin appears to be almost, but not quite a basin-center gas accumulation, with adequate
temperatures, thermally mature, gas-prone source rocks, overpressure and  gas shows. But the formation test
results indicate too much water and not enough gas to completely match the definition. The volume of gas
expelled from the source rocks may have been inadequate to effectively de-water the reservoir section. A
Miocene-age regional hydrothermal event may have altered the plumbing of the basin.

Is There a Basin-Center Gas Accumulation in Cotton Valley Group Sandstones, Gulf
Coast Basin, USA?

In 1995 the USGS assessed one oil and two conventional gas plays and one basin-center gas play in
Cretaceous/Jurassic Cotton Valley sandstones in the onshore northern Gulf of Mexico basin. Detailed evaluation
of geologic and production data provides new insights into these Cotton Valley plays.

Two Cotton Valley sandstone trends are identified based on reservoir properties and gas-production
characteristics. Transgressive blanket sandstones across northern Louisiana have relatively high porosity and
permeability and do not require fracture stimulation to produce gas at commercial rates. South of this trend, and
extending westward into east Texas, massive sandstones of the Cotton Valley exhibit low porosity and
permeability and require fracture stimulation.

Pressure gradients throughout most of both trends are normal, which is not characteristic of basin center gas
accumulations. Presence of gas-water contacts in at least seven fields across the blanket-sandstone trend together
with relatively high permeabilities and high gas-production rates without fracture stimulation indicate that fields
in this trend are conventional. Within the tight, massive-sandstone trend, however, permeability is sufficiently
low that gas-water transition zones are vertically extensive and gas-water contacts poorly defined. With
increasing depth through these transition zones, gas saturation decreases and water saturation increases until
eventually gas saturations become sufficiently low that, in terms of cumulative production, wells become non-
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commercial. Interpreted presence of gas-water contacts within the tight, massive Cotton Valley sandstone trend
suggests that accumulations in this trend are also conventional, and that a basin center gas accumulation does
not exist within the Cotton Valley Sandstone in the northern Gulf basin.

Is There a Basin-Center Gas Accumulation in the Ordovician-Age Glenwood  Formation
and St. Peter  Sandstone, Central Michigan Basin ?

Well data, structure maps, previous studies of abnormal pressures and thermal maturity, and published
descriptions of gas fields were evaluated to determine if a basin-center gas accumulation might exist within the
Ordovician-age Glenwood Formation and St. Peter Sandstone in the Michigan basin. The Glenwood-St. Peter
section has several characteristics of typical basin-center gas accumulations, including thermally mature source
rocks, low porosity sandstone reservoirs, extensive overpressure and extensive production of dry gas and
condensate.

Well histories and data from more than 100 drill-stem tests reveal that many wells recovered significant volumes
of salt water or gassy salt water with high chloride content (230,000 – 270,000 ppm Cl-) from the Glenwood-
St. Peter interval. Pressure gradients range from 0.4 to 0.56 psi/ft, indicating normal pressures to moderate
overpressures. Core descriptions indicate fair porosity (4 to 13 percent, average 9 percent) within the St. Peter
Sandstone. Permeabilities vary widely, ranging from <0.1 md to 750 md, with 11 to 88 md in some thin
sandstone lenses. High permeabilities are also indicated by the large amounts of water recovered in some of the
drill-stem tests. Permeabilities as high as these are seldom found in typical basin-center gas accumulations.

The sixteen gas fields which produce from the Glenwood Formation and/or St. Peter Sandstone are all located
within anticlinal structures. Most of these gas accumulations have distinct gas-water contacts, and many are
flanked by abandoned wells which tested water from the Glenwood-St. Peter section in low structural positions.
Some of the traps appear to be incompletely filled with gas. Significant water production and strong water drives
have been noted in many of the published field descriptions. Reservoir temperatures are generally lower than
190° F. Reservoir pressure gradients range from near-normal (0.4 psi/ft) to moderately overpressured (0.56
psi/ft).

Regional structure maps indicate a relatively uncomplicated basin structure lacking major transverse fault zones
or fault-bounded pressure compartments. The salt water system in the Glenwood-St. Peter interval probably
extends throughout the central basin. Perhaps the Cambrian-Ordovician source rocks were not thick or rich
enough and did not expel enough hydrocarbons to fully saturate the available porosity with gas, or perhaps they
cooled down and ceased gas expulsion too early. The Glenwood-St. Peter section has not been completely
saturated with gas. Based on analysis of well data and field descriptions, the Glenwood-St. Peter gas system is
   not    a basin-center gas accumulation.

Potential for a Basin-Center Gas Accumulation in the Raton Basin, Colorado and New
Mexico

The Raton Basin appears to contain a significant continuous or basin-center type gas accumulation in sandstones
of the Upper Cretaceous Trinidad Sandstone and Vermejo Formation and Upper Cretaceous and Paleocene Raton
Formation. The accumulation is underpressured and occurs at comparatively shallow (< 3,500 ft) depths. The
sandstones are interbedded with coal beds that are currently being developed for coalbed methane, and the coals
are the likely source for gas found in the sandstones. Based on analog comparisons with other Rocky Mountain
basins, relatively water-free production should occur where levels of thermal maturity in the coals exceed a
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vitrinite reflectance value of 1.1 percent. This level of thermal maturity occurs over much of the central part of
the Raton Basin. Because of the shallow depths, some of the accumulation has probably been degraded by
surface water invasion.

Does the Forbes Formation in the Sacramento Basin Contain a Basin-Center Gas
Accumulation?

Well data, structural cross sections and published studies of abnormal pressures, methane isotopes, vitrinite
reflectance measurements and thermal maturity were evaluated to determine if a basin-center gas accumulation
might exist within the Cretaceous-age Forbes Formation in the Sacramento Basin, California. The Forbes
Formation is a mud-rich turbidite system with thick marine shale deposits and discontinuous sandstone lenses.
At least twenty-seven natural gas fields have been discovered in the Forbes Formation, mainly in traditional
structural and stratigraphic traps with distinct gas-water contacts.

Previous studies of source rock and organic content show that the Forbes Formation contains low levels of gas-
prone organic material, mainly dispersed fragments of lignite, wood and land plants. A recent study of the
Dobbins Shale notes extensive bioturbation and lack of laminations, indicating oxidizing conditions. Studies of
source rock quality in outcrops along the western flank of the basin found low organic content throughout the
Upper Cretaceous section. Thermal gradients and bottom hole temperatures are unusually low in the Sacramento
Basin. Published vitrinite reflectance profiles show that the Forbes is immature to sub-mature throughout most
of the basin. All Forbes gas production comes from thermally immature sandstone reservoirs with low
temperatures (< 190° F) and relatively high porosities (17 – 30 percent). The gas produced from most Forbes
reservoirs is primarily methane, with variable amounts of nitrogen. Isotope analyses indicate that the methane is
a mixture of immature, biogenic methane and overmature, thermogenic methane, which apparently migrated
long distances from a deep gas kitchen, probably dissolved in formation waters under high pressure.

The lower Forbes Formation and underlying Dobbins Shale are overpressured throughout the central and
southern parts of the basin. Drill stem test data from the Grimes, Buckeye, Kirk, and Arbuckle Gas Fields and
the Rumsey Hills area indicate abnormal pressure gradients ranging from 0.5 to 0.92 psi/ft in the Forbes. The
overpressuring fluid is usually gassy salt water, not hydrocarbons.  No evidence of sub-normal pressure was
observed. Previous authors have suggested that the primary causes of the overpressures in the Forbes are tectonic
compression and aquathermal pressuring, rather than hydrocarbon generation. The Forbes appears to be
regionally water-saturated, except for localized structural/stratigraphic gas traps. The Forbes has not been
extensively de-watered by local gas generation. The basin-center gas model does not appear to fit the Forbes
Formation in the central, northern and eastern parts of the Sacramento Basin.

Previous authors have suggested that the Delta Depocenter, a deep wrench basin in the southwestern Sacramento
Basin, may be the deep gas kitchen where much of the basin’s gas was generated. Structural cross sections show
that the lower Forbes Formation and Dobbins Shale may be buried 18,000 to 20,000 ft deep in this structural
depression. Older source rocks such as the Upper Cretaceous-age Funks and Yolo Shales may be buried as deep
as 23,000 to 26,000 ft. A thermal maturity model was constructed for the Delta Depocenter, using Basin-Mod
software, published cross sections, vitrinite profiles, thermal gradients and well log data. The maturity model
predicts a deep gas generation window with Ro >0.9 percent at 15,000 ft and Ro > 3.0 percent at approximately
26,000 ft. The lower Forbes, Dobbins, Funks and Yolo shales are probably within the gas generation window.
If these source rocks are rich enough to generate large quantities of gas, a basin-center gas system might exist in
the deepest parts of the Delta Depocenter. Several exploration wells have been drilled to 14,000 to 15,059 ft in
this area. Well histories, well logs and drill stem test results were reviewed for evidence of basin-center gas
conditions near total depth. High drilling-mud densities indicate overpressures, but high-pressure salt water was
recovered in several formation tests; evidently, the Forbes Formation is still water-saturated at this depth. The
formation test data do not indicate basin-center gas conditions in the 14,000 to 15,000 ft depth range.
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An ultra-deep basin-center gas system might exist below 16,000 ft in the Delta Depocenter, if gas expelled from
mature source rocks has extensively saturated and de-watered the reservoirs. However, the complex Midland and
Kirby Hills Fault zones may provide permeable migration paths for gas to escape from this deep gas kitchen.
The gas kitchen may have been breached by faulting, and thus failed to become a continuous, basin-center gas
accumulation. There have not yet been any wells drilled deep enough to evaluate this gas kitchen. The
possibility of a basin-center gas accumulation in the Delta Depocenter should be considered highly speculative.

Is There a Basin-Center Gas Accumulation in the Travis Peak (Hosston) Formation, Gulf
Coast Basin, USA?

Potential of Lower Cretaceous Travis Peak sandstones in the northern Gulf Coast Basin to harbor  a basin-center
gas accumulation was evaluated by examining (1) depositional/diagenetic history and reservoir properties of
Travis Peak sandstones, (2) presence and quality of source rocks for generating gas, (3) burial/thermal history of
source rocks and time of gas generation/migration relative to tectonic development of Travis Peak traps, (4) gas
and water recoveries from drillstem and formation tests, (5) distribution of abnormal pressures based on shut-in-
pressure data, and (6) presence or absence of gas-water contacts associated with gas accumulations in Travis Peak
sandstones.

The Travis Peak Formation is a basinward-thickening wedge of terrigenous clastic sedimentary rocks that
underlies the northern Gulf of Mexico Basin from east Texas across northern Louisiana to southern Mississippi.
Clastic influx was focused in two main fluvial-deltaic depocenters located in northeast Texas and southeast
Mississippi/northeast Louisiana. Across the main hydrocarbon-productive trend in east Texas and north
Louisiana, the Travis Peak Formation is about 2,000 ft thick.  In east Texas, stacked, fluvial-channel sandstones
comprise the bulk of the formation. Channel sandstones grade upward from braided to meandering, and are
capped by a thin sequence of coastal-plain, paralic, and marine strata reflecting the overall transgression and
relative rise in sea level that occurred during Travis Peak deposition. In north Louisiana, sandstones deposited in
interdeltaic settings are separated by thicker shale intervals.

Most Travis Peak hydrocarbon production in east Texas comes from drilling depths between 6,000 and 10,000
ft. Significant decrease in porosity and permeability through that depth interval results primarily from increasing
amounts of quartz cement with depth. Reservoir properties of many Travis Peak sandstones, however, are
significantly better than those characteristic of basin-center gas reservoirs in which inherent, ubiquitous, low-
permeability provides an internal, leaky seal for thermally generated gas. Above 8,000 feet in east Texas, Travis
Peak sandstone matrix permeabilities often are significantly higher than the 0.1 md cutoff that characterizes
tight-gas reservoirs. Below 8,000 ft, matrix permeability of Travis Peak sandstones is low because of pervasive
quartz cementation, but abundant natural fractures impart significant fracture permeability. In east Texas, oil and
gas seem to be concentrated in meandering-channel and paralic sandstones in the upper 300 ft of the Travis Peak.
This probably occurs because these sandstones are encased in thick shales that provide effective seals. The
underlying thick fluvial sequence lacks widespread shale barriers, and stacked, braided-channel sandstones provide
an effective upward migration pathway for gas. In north Louisiana, relatively thick shales throughout the Travis
Peak provide effective seals for interdeltaic sandstones.

Because of significant variation with depth in both reservoir properties and occurrence of shale seals in the
Travis Peak Formation in east Texas, inaccurate interpretations can be made by using pressure data or presence
of hydrocarbon-water contacts at a particular depth to characterize the entire Travis Peak at a given well location.
Although pressure data within the middle and lower Travis Peak Formation are limited in east Texas, significant
overpressure caused by thermal generation of gas, which is typical of basin-center gas accumulations, is not
common within the Travis Peak. Significant overpressure was found in only one Travis Peak sandstone
reservoir in one of 24 oil and gas fields examined across east Texas and north Louisiana. Presence of a gas-water
contact perhaps is the most definitive criterion indicating that a gas accumulation is conventional rather than a
“sweetspot” within a basin-center gas accumulation. Hydrocarbon-water contacts within Travis Peak sandstone
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reservoirs were documented in 17 fields, and probably occur in considerably more fields, across the
productive Travis Peak trend in east Texas and north Louisiana. All known hydrocarbon-water contacts
in Travis Peak reservoirs in east Texas, however, occur within sandstones in the upper 500 ft of the
formation. Widespread presence of hydrocarbon-water contacts indicates lack of significant basin-center
gas accumulations within the Travis Peak Formation throughout north Louisiana, and within the upper
500 ft of the Travis Peak in east Texas. Although no gas-water contacts have been reported within the
lower three-fourths of the Travis Peak Formation in northeast Texas, gas production from that interval
is limited. Best available data suggest that most middle and lower Travis Peak sandstones are water-
bearing in northeast Texas. These data together with absence of significant overpressure suggest that
the middle and lower Travis Peak section also lacks significant basin-center gas in northeast Texas.

Insufficient hydrocarbon charge relative to permeability of Travis Peak reservoirs might be primarily
responsible for lack of overpressure and basin-center gas within the Travis Peak Formation. Shales
interbedded with Travis Peak sandstones in east Texas are primarily oxidized floodplain deposits with
insufficient organic-carbon content to be significant sources of oil and gas. Most likely sources for
hydrocarbons in Travis Peak reservoirs are two stratigraphically lower units, Jurassic-age Bossier Shale
of the Cotton Valley Group, and laminated, lime mudstones of the Jurassic Smackover Formation.
Hydrocarbon charge, therefore, might be sufficient for development of conventional gas accumulations
but insufficient for development of basin-center gas as a result of the absence of proximal source rocks
and effective migration pathways from stratigraphically or geographically distant source rocks.
Additionally, relatively high matrix and fracture permeability through significant portions of Travis
Peak sandstone reservoirs might allow upward migration of gas to the degree that abnormally high
pressure and basin-center gas cannot develop.
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